
1

רשתות  מחשבים  
2ואינטרנט

(046005)

2024/25–חורף 



2

Course Objectives (vs. Networks 1)

1. Know more about the Internet

1. Applications (new: distributed and peer-to-peer)

2. Protocols  (new: details of TCP, new: routing protocols)

2. Know more Networking tools

1. Queuing theory (advanced: queuing networks)

2. Routing algorithms (new)

3. Network optimization algorithms (new)



3



moodle-אתר הקורס ב

תוכן מתווסף במהלך הסמסטר

בדואר אלקטרוניMoodleהודעות תימסרנה דרך רשימת תפוצת ❖

.באחריות הסטודנטים לעקוב אחר ההודעות בדואר האלקטרוני ובאתר הקורס•

"אחריות"אין –בחינות ותוכן מסמסטרים קודמים לנוחותכם בלבד , הקלטות❖

!משוב סטודנטים יכול לעזור מאד❖

4



Course structure: Top Down

Networks 1

❖ Layer 2 – Data link and MAC

❖ Layer 3 – Network 

❖ Layer 4 – Transport 

❖ (Layer 5 – Application)

Networks 2

❖ Layer 5 – Application

❖ Layer 4 – Transport 

❖ Layer 3 – Network 

❖ Top down approach!

5



6



Computer Networking: A Top 
Down Approach ,
5th edition. 
Jim Kurose, Keith Ross
Addison-Wesley, April 2009. 

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers). 

They’re in PowerPoint form so you can add, modify, and delete slides  

(including this one) and slide content to suit your needs. They obviously 

represent a lot of work on our part. In return for use, we only ask the 

following:

❑ If you use these slides (e.g., in a class) in substantially unaltered form, that 

you mention their source (after all, we’d like people to use our book!)

❑ If you post any slides in substantially unaltered form on a www site, that 

you note that they are adapted from (or perhaps identical to) our slides, and 

note our copyright of this material.

Thanks and enjoy!  JFK/KWR

All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved



Review: Internet protocol stack

5. Application: supporting network applications

❖ FTP, SMTP, HTTP

4. Transport: process-process data transfer

❖ TCP, UDP

3. Network: routing of datagrams from source to destination

❖ IP, routing protocols

2. Link: data transfer between neighboring  network elements

❖ PPP, Ethernet

1. Physical: bits “on the wire”

application

transport

network

link

physical

8



Quiz: in which layer we can find the service?

1. Physical

2. Link

3. Network

4. Transport

5. Application

9



Forwarding in a local network

10

1. Physical

2. Link

3. Network

4. Transport

5. Application

?



11



Routing in the Internet

12

1. Physical

2. Link

3. Network

4. Transport

5. Application

?



13



Wiring an optical fiber

14

1. Physical

2. Link

3. Network

4. Transport

5. Application

?



15



Compressing a web page

16

1. Physical

2. Link

3. Network

4. Transport

5. Application

?



17



Managing point-to-point flow

18

1. Physical

2. Link

3. Network

4. Transport

5. Application

?



19



Some network applications

 e-mail

 web

 instant messaging

 remote login

 P2P file sharing

 multi-user network games

 streaming stored video clips

 social networks

 voice over IP

 real-time video conferencing (Zoom)

 grid computing 
❖ Combination of computer resources 

from multiple administrative domains to 
reach a common goal

 cloud computing 
❖ Delivery of computing as a service 

rather than a product

20

✓ Applications are programs that 
✓ Run on (different) end systems

✓ Communicate over network

✓ No need to write software for network-core devices

✓ Use operating system services at edges



Application architectures

Client-server

❖ Including data centers / cloud computing

 Peer-to-peer (P2P)

Hybrid of client-server and P2P

21

Today



Client-Server Protocols

22

Client

Server

Initiate Request

Listen, 

Accept
Respond

Information

(layer 5)

Connection

(layer 4)



Client or server?

23

Client

SMTP dst port: 465

Server

SMTP src port: 465

Example: email (SMTP)

send, receive



Client or server: relative, not absolute

24

Client

SMTP dst port: 25

Example: email (SMTP)

Server

SMTP src port: 25

mail sender mail receiver



Client or server: relative, not absolute

25

Client

SMTP dst port: 25

Example: email (SMTP)

Server

SMTP src port: 25

Client

SMTP dst port: 465

Server

SMTP src port: 465



The most useful client-server protocol?

26

HTTP

web, video streaming (youtube), social networking (facebook), in both 

browser and mobile apps 

HTTPS = HTTP + TLS (Transport Layer Security)

Browser traffic App traffic

?% ?%



The most useful client-server protocol?

27

HTTP

web, video streaming (youtube), social networking (facebook), in both 

browser and mobile apps 

HTTPS = HTTP + TLS (Transport Layer Security)



HTTP & Web

HTTP: hypertext transfer protocol
❖ Web’s application layer protocol

Client/Server model
❖ Client: browser/app that requests, receives, 

“displays” web objects

❖ Server: web server sends objects in response 
to requests

HTML: hypertext markup language
❖ Base file describes content as tree of objects

• Typically, >100 of objects 

❖ Objects are text, HTML files, script code, 
java-script, audio, images, …

❖ Each object addressable by URL
• www.host.name/path/to/object/such/as/a.gif

PC running
Firefox

Server 
running

Apache Web
server

Mac running
Safari

Android running
Chrome

HTTP 
request

HTTP 
response

28



HTTP over TCP

Request-response on top of TCP (application-layer protocol 

messages) 

❖ Client initiates TCP connection to server,  port 80, server accepts

❖ HTTP messages exchanged between client and server

❖ TCP connection closed

 “Stateless”

❖ Server maintains no information about past client requests

❖ Protocols that maintain “state” are complex!

• Past history (state) must be maintained

• If server/client crashes, their views of “state” may be inconsistent, must be reconciled

❖ HTTP is stateless does not imply application is stateless

29



HTTP Messages (from RFC)

Request

 Request line: method + URL + 
version
❖ GET/HEAD/POST/PUT/DELETE/CONNECT

http://request/URL/ HTTP/version 
CRLF

 Headers: optional + custom
❖ Header: value CRLF

❖ Connection: keep-alive/close

❖ Transfer-Encoding: chunked

❖ Host: www.tx.ac.il (why needed?)

 Empty line: CRLF

 Message body (optional)
❖ Txt, XML, json, …

Response

 Status: code + reason
❖ HTTP/version CODE reason CRLF

❖ 1xx info, 2xx success, 3xx redirect, 
4xx client err, 5xx server err

 Headers: optional + custom
❖ Date: Tue, 15 Mar 2016 07:10:30 

GMT

❖ Content-Length: 70 (why needed?)

❖ Content-Type: text/html

 Empty line: CRLF

 Body
❖ HTML

30



A brief history of HTTP

 1996: HTTP 1.0

❖ Non-persistent

 1999: HTTP 1.1

❖ Persistent

❖ Pipelining

 2015: HTTP 2

❖ Streams

 Future: HTTP 3 (over QUIC transport protocol)

31



Initial HTTP (version 1.0)

Non-persistent HTTP

❖ Client initiates TCP connection to server,  port 80, server accepts

❖ One HTTP request-response

❖ TCP connection closed by server

32

repeated per 

requested 

object



Non-persistent HTTP Example

Suppose user enters URL www.technion.ac.il/path/page.html

browser server

1. TCP connect to www.technion.ac.il:80

2. listen on port 80, accept

3. establish TCP connection, send request (GET /path/page.html)

4. respond with main HTML page (possibly multiple segments)

5. close TCP connection

6. receive HTML, parse, display, find referenced objects

7. repeat for each object

Time

33

http://www.technion.ac.il/path/page.html
http://www.technion.ac.il/
http://www.technion.ac.il/path/page.html


Non-Persistent HTTP: Response time

Definition of RTT: round trip time

❖ Time for a small packet to travel from client 

to server and back.

Response time:

❖ One RTT to initiate TCP connection

❖ One RTT for HTTP request and first few 

bytes of HTTP response to return

❖ File transmission time

 Total = 2RTT+transmit time – per object!

time to 

transmit 

file

initiate TCP

connection

RTT

request

file

RTT

file

received

time time

34



Disadvantages of non-persistent

1. Long response time

2. Clients mitigation: use parallel connections 

Why is this bad? 

35



Non-persistent → parallel TCP connections

2a: Overhead: manage multiple buffers, protocol states (OS 

resources)

2b: Skewed congestion control

36

single connection 3 parallel connections

3/N bandwidth instead of 1/N



Disadvantages of non-persistent

1. Long response time

2a. Parallel connections: resource overhead 

2b. Parallel connections: skewed congestion control

37



HTTP Connection (revisit)

Request-response on top of TCP (application-layer protocol 

messages) 

❖ Client initiates TCP connection to server,  port 80, server accepts

❖ HTTP messages exchanged between client and server

❖ TCP connection closed

Non-persistent HTTP (version 1.0 default)
• Close connection after one request (single object fetched)

• Simple, no idle open connections, more overhead (2 RTTs) per object

• Typically used with parallel connections

38



Improved HTTP (version 1.1)

 Persistent connection by default

❖ Add “connection: close” to notify non-

persistent connection

 Pipelined connections

❖ Send multiple requests on connection

• Responses in FIFO order only

❖ Need to handle failures

39



Pipelined HTTP (https://www.safaribooksonline.com/library/view/http-the-definitive/1565925092/ch04s06.html)

40



Pipelined HTTP Advantages

1. Overlap request and response propagation times

2. Overlap request-processing times and communication time

41

Static WEB Dynamic WEB (“WEB 2.0”)

Read (static) content object 

from storage
Generate content object from 

server data and business 

logic (user customization) 



Issues with Pipelined HTTP

1. Head-of-Line blocking due to FIFO

❖ Slow requests block those after them

2. Handling failures

❖ What if the connection is closed after pipelining N requests?

42

Clients SHOULD NOT pipeline requests using non-idempotent

methods or non-idempotent sequences of methods (see section 

9.1.2). 

Otherwise, a premature termination of the transport connection 

could lead to indeterminate results.

Solution (from RFC 2616):

Solution:

Client optimization



HTTP 1.0/1.1 Summary

Request-response on top of TCP (application-layer protocol 
messages) 
❖ Client initiates TCP connection to server,  port 80, server accepts

❖ HTTP messages exchanged between client and server

❖ TCP connection closed

Non-persistent HTTP (version 1.0 default)
• Close connection after one request (single object fetched)

• Simple, no idle open connections, more overhead (2 RTTs) per object

• Typically used with parallel connections

 Persistent HTTP (version 1.1 default)
• Multiple request-response messages over same TCP connection

• Less overhead (1 RTT) per request (from 2nd object) , longer TCP, fewer connections

• Can use a pipeline (queue of requests), can still use parallel connections

43



HTTP 2.0

 (proposed by Google)

 Goal: 
single connection, pipelining, but no head-of-line blocking

 Idea: 
multiplex HTTP sub-streams on a single TCP connection
❖ Send data stream in interleaved frames 

• Per-frame 8B binary header (len, type, flags), per-frame 31b id

❖ HEADER frames
• Establish stream, id, define priority, compressed (diff)

❖ DATA frames
• Pieces of data that can be multiplexed, <16KB

 Better TCP throughput, fewer TCP connections, less data
❖ Many small files? No problem.

 More
❖ Stream and connection flow control

❖ Server push

❖ Book: https://hpbn.co/ High Performance Browser Networking / ILYA GRIGORIK

44

server

client

Stream 1

DATA

Stream 2

DATA

Stream 2

DATA

Stream 1

DATA

Stream 2

HEADERS

Stream 1

DATA

Stream 1

HEADERS

re
q
u

e
s
ts

 1
,2

 (a
ls

o
 fra

m
e

d
)

https://hpbn.co/


HTTP in Practice

 Persistent, but some limitations
❖ Many objects are from other hosts

❖ Server may close connections

We don’t always talk with the server
❖ Redirections

❖ Gateways / caches

❖ CDNs (Content Distribution Networks)

Complex content
❖ Browser processing may delay network 

❖ Dependencies between objects

❖ Active content

45



HTTP Redirect

Request

 Request line: method + URL
❖ GET/HEAD/POST/PUT/DELETE/CONNECT

http://request/URL/ HTTP/version 
CRLF

 Headers: optional + custom
❖ Header: value CRLF

❖ Connection: keep-alive/close

❖ Transfer-Encoding: chunked

❖ Host: www.tx.ac.il 

 Empty line: CRLF

 Message body (optional)
❖ Txt, XML, json, …

Response

 Status: code + reason
❖ HTTP/version CODE reason CRLF

❖ 1xx info, 2xx success, 3xx redirect, 
4xx client err, 5xx server err

 Headers: optional + custom
❖ Date: Tue, 15 Mar 2016 07:10:30 

GMT

❖ Content-Length: 70 

❖ Content-Type: text/html

 Empty line: CRLF

 Body
❖ HTML

46

Application-layer redirect



HTTP in real networks: gateways/caches

Network 1 Network 2

1. ISP network (DSL, Cable)

2. Cellular network

3. Satellite network

The wide Internet

gateway



HTTP by Proxy

Network 1 Network 2

1) Client sends http requests 

to Proxy server

4) Proxy server sends 

responses to client

2) Proxy forwards requests 

to web server

3) Web server sends 

response to Proxy

Proxy

Transparent to web server 

(thinks Proxy is a client)Transparent to client (thinks 

Proxy is a web server)



Why Proxy?

Many reasons

❖ Help the client

❖ Protect the client

❖ “Protect” (censor) the client

❖ Save resources

49



Snapshot of http with Proxy

50

Extra delay



Proxy performance advantage

Network 1 Network 2

Proxy

RTT1 RTT2

RTT

Transport (RTT1) → Transport (RTT2) vs. Transport (RTT1+RTT2) ?



Proxy transport advantage

52

No Proxy Proxy

3.5RTT 2RTT

4RTT1=4RTT2

Assumptions: 

• RTT1=RTT2

• ti negligible (compared to RTT)

× 0.5



HTTP Caching

53

Challenges?



HTTP Caching

 Staleness

❖ Expiration time, last modified time

❖ Conditional GET: ask server if stale 

• Client: If-Modified-Since: date-time, server: 304 Not Modified 

Uncacheable objects?

❖ Dynamic data (quickly becomes stale)

❖ User-specific data, cookies, encryption

❖ Analytic/Tracking (deliberately make data unique)

54



HTTP Proxy Summary

 Broker between client and server
❖ Accepts request from client, forwards (a new request) to server

❖ Gets responses from server, forwards (a new response) to client

❖ 2 separate TCP connections, 2 separate HTTP connections

• Proxy acts as HTTP server

 Why?
❖ Performance

• Lower latency → more efficient TCP

• cache: fetch common content only once

– less connections on server, less traffic, better latency

• offload: perform common server tasks (e.g., encryption)

❖ Privacy – hide client from server

❖ Filtering – hide content from client

55

HTTP

request/

response

HTTP

request/

response

HTTP

request/

response

origin

proxy

clientclient



The missing layers

 Presentation: allow applications to interpret meaning 

of data, e.g., encryption, compression, machine-

specific conventions

 Session: synchronization, checkpointing, recovery of 

data exchange

 Internet stack “missing” these layers!

❖ These services, if needed, must be implemented in 

application

application

presentation

session

transport

network

link

physical

56



Cookies: keeping “state”

57

client
server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg

Amazon server

creates ID

1678 for user create
entry

usual http response 
Set-cookie: 1678 

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access
ebay 8734

amazon 1678

backend

database



Implementing user-server sessions: cookies

 Mechanism
❖ Cookie generated by web site on first time interaction

• Unique id

• Entry in back-end database at web site

• Cookie header line of HTTP response message

❖ Cookie stored by client

• Cookie file kept on user’s host, managed by user’s browser

❖ Cookie sent back to server on next interaction

• Cookie header line in HTTP request message

 Motivation
❖ Long-term state (e.g., membership, authorization)

❖ Short-term state (e.g., shopping carts, email session)

❖ User tracking (e.g., recommendations, advertisements)

• Privacy issues, track user on multiple sites

58

<img src="http://bank.example.com/withdraw?account=bob&amount=1000000&for=mallory">

possible solution: 

“same-origin policy”


