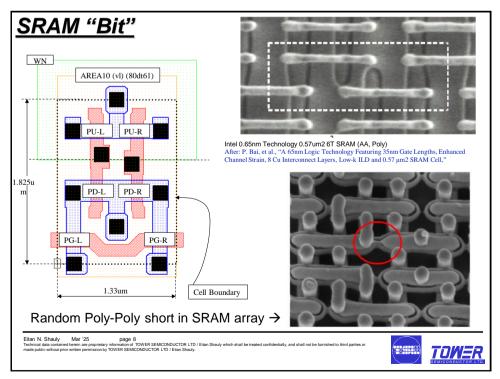
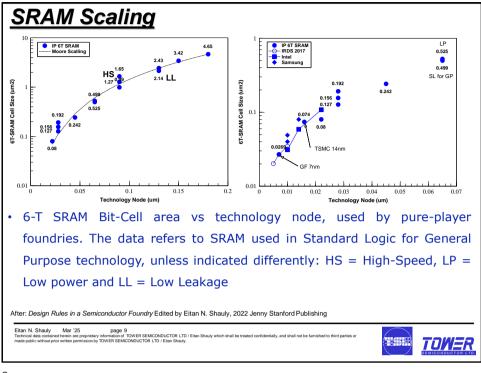
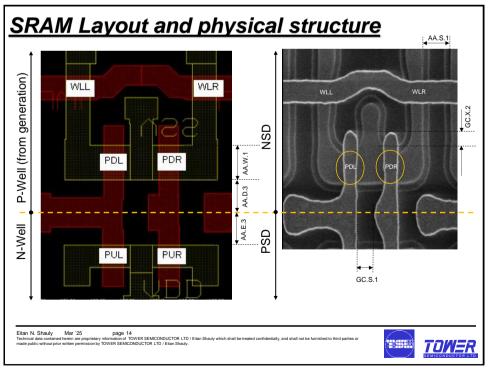
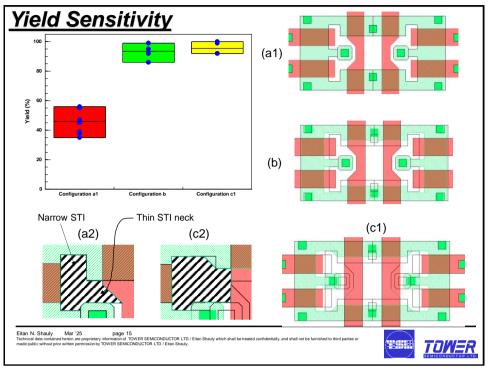
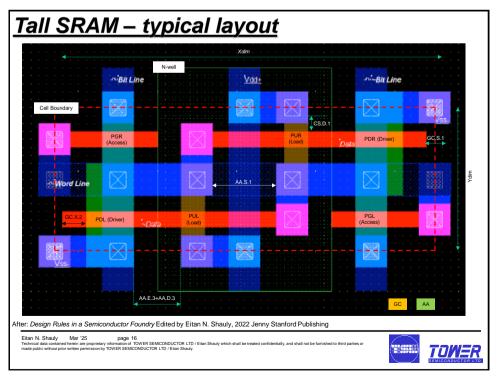

<u>Topics</u> Introduction - qualification and the foundry responsibility • Foundry TQV for platform development • Level-2 qualification • SRAM TEG: structure, scaling, operation, layout Environmental tests • Early Life Failure Rate (ELFR) – calculation Burn-In for screening Random failures, x-ray soft error, • High-temperature operating life (HTOL) • Biased temperature and humidity (THB, 85/85) Temperature cycling (TMCL) • Autoclave Eitan N. Shauly Mar '25 tower

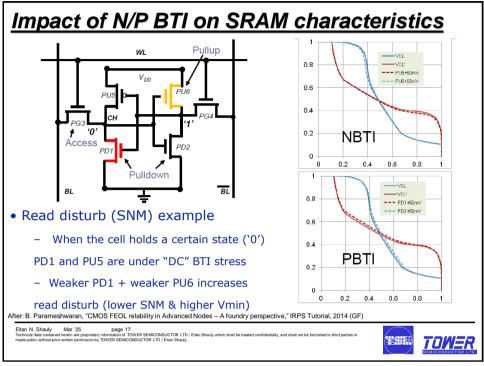


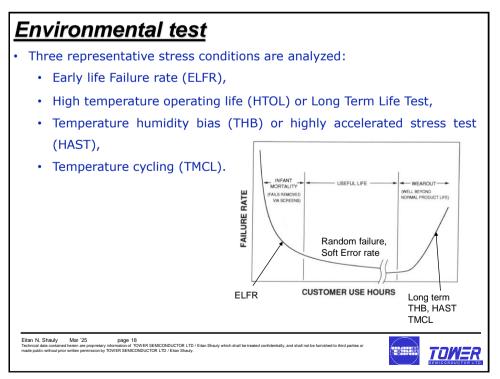


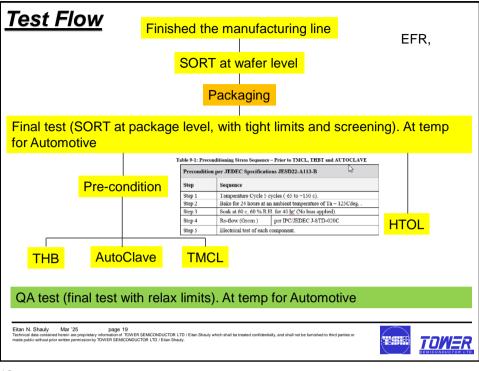


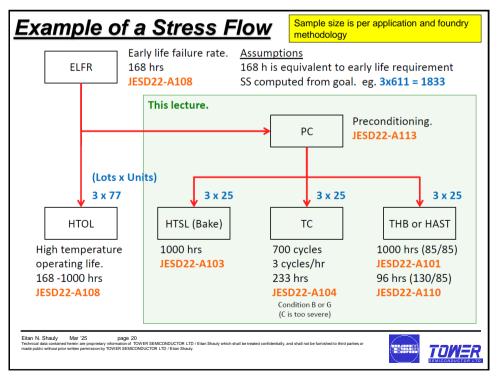

7	he TQV (Te	echn	olog	y Qı	Jalifi	catio	on Ve	ehicl	<u>e)</u>
•	The tool: an appr	opriate	techno	ology qu	ualificat	ion veh	icle - S	RAM or	circuit
	of equivalent com	plexity	,						
•	Recommended SI	RAM siz	es dep	end on	the tec	hnology	/ node a	and are	based
	on SRAMs popula	ted wit	h a bit:	design	and la	yout de	ensity e	xpected	d to be
	typical at the res	pective	lithogra	aphic no	ode.				
	Technology	180nm	130nm	90nm	65nm	40nm	28nm	20nm	16nm
	SRAM Size (Mb)	2	8	16	32	64	128	256	512
No	otes:								
(1) SRAM is the bes	t vehic	e for d	efect de	ensity s	tudy an	id moni	toring.	
	However, due to	the uni	form a	topolog	y, it is	NOT po	ssible t	o identi	ify
	problems related	to dive	ergent t	opologi	ies,				
(2) Defect density a	inalysis	require	ed a lar	ger nun	nber of	sample	es. Also	, using
	smaller SRAM siz	e requi	red mo	re sam	ples,				
Tec	tan N. Shauly Mar '25 page 6 christid data contained herein are proprietary information of de public without prior written permission by TOWER SEMI	TOWER SEMICONDUC		which shall be treated c	confidentially, and shall n	ot be furnished to third p	arties or		

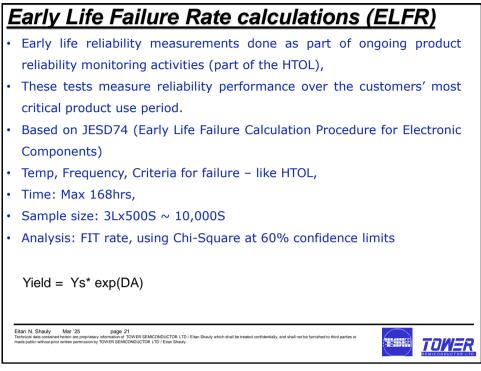


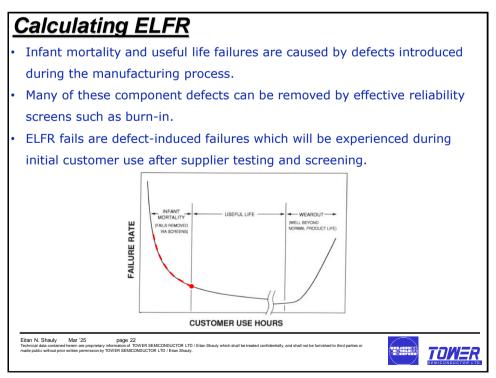


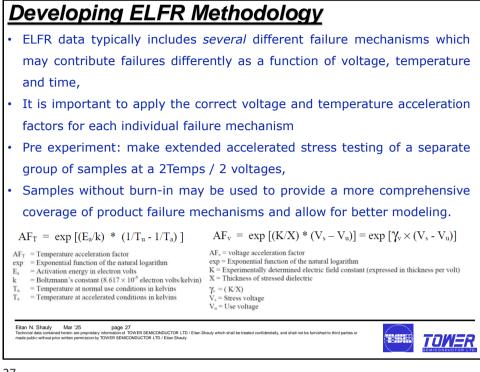




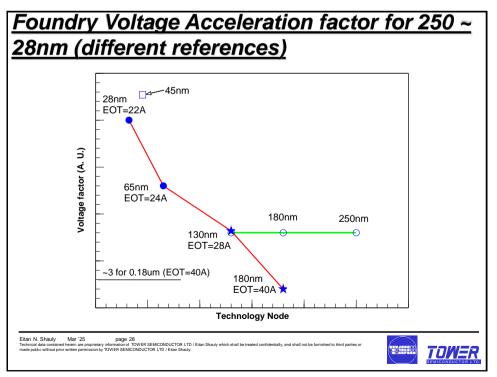


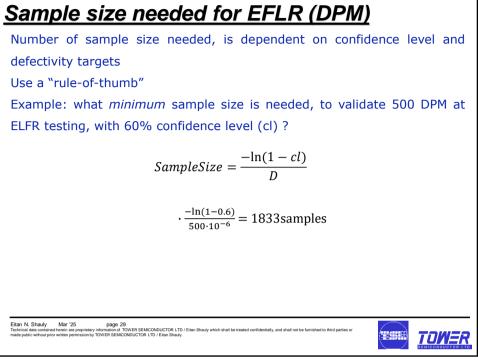






					F	ailure mo	de			
Failure factor	Failure mechanism	Short circuit	Open	Increase in leakage current	Impossible to withstand voltage	Vt/h _{FE} shift	Unstable operation	Resistance fluctuation	Increase in thermal resistance	Soldering error
	Crystal defect	0		0	0		0	0		
Bulk Substrate	Crack		0	0	0	0	0	0		
Diffusion	Surface contamination			0	0	0	0	0		
P-N junction	Junction deterioration	0		0	0					
Device separation	Impurity precipitation	0		0	0	0				
	Mask deviation	0	0	0	0		0			
	Movable ion			0	0	0	0			
Oxide film	Interface state			0	0	0	0			
Jxide film	TDDB (time dependent dielectric break down)	0		0						
	Hot carrier			0	0	0				
Metallization	Corrosion		0	0	0		0	0		
Wire	Electro migration	0	0					0		
Via	Stress migration		0					0		
Contact	Alloy pitting	0					0			
	Al shift caused by resin stress		0					0		
Passivation	Pinhole	0		0	0	0	0			
Surface protective	Crack	0		0	0	0	0			
film	Contamination			0	0	0	0	0		
Layer insulation film	Reversed surface			0	0	0	0	0		
	Crack (stress non-uniformity, void)	0	0				0	0	0	
Die bonding	Chip peeling (insufficient bonding strength)		0				0	0	0	
	Thermal fatigue		0				0	0	0	


					Fa	ailure mo	ode			
Failure factor	Failure mechanism	Short circuit	Open	Increase in leakage current	Impossible to withstand voltage	Vt/h _{PE} shift	Unstable operation	Resistance fluctuation	Increase in thermal resistance	Soldering error
	Defective substrate		0					0	1	
	Peeled bond		0					0		
	Generation of compound between metals (purple plague)		Õ					Õ		
	Damage under bond, crack	0		0	0		0	0		
Wire bonding	Bonding position deviation	0	0	0						
	Wire deformation	0								
	Wire breakage		0							
	Short circuit between wires	0								
	Cracked package		0	0						
	Moisture absorption (lead frame, resin interface)		0	0	0	0	0			
Package Resin	Impurity ion of resin			0	0	0				
Lead frame	Surface contamination			0	0	0				0
Lead plating	Curing stress	0	0		0	0		0		
	Corroded or oxidized lead		0			0	0	0		0
	Broken or bent lead		0							0
	Static electricity	0		0	0	0	0			
	Overvoltage	0	0	0	0	0	0			
Use environment	Surge voltage	0		0	0	0	0			
	Latch-up	0	0				0			
	Software error						0			

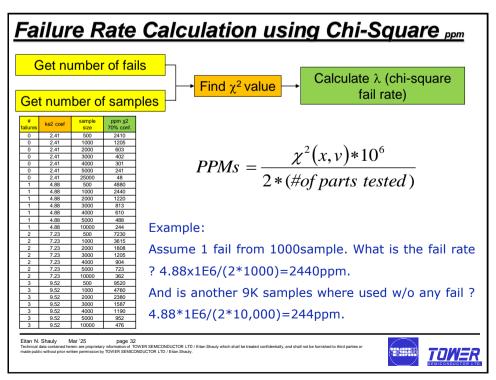

					A	nbier	nt co	nditi	ons f	or fai	lure	accel	erati	on				
Failure factor	Failure mechanism	High-temperature operation	High-temperature bias	Low-temperature operation	Intermittent operation	Left at high temperature	Left at low temperature	Temperature cycle	Thermal shock	Left at high temperature and high humidity	THB/USPCBT	Shock	Fall	Vibration	Spray of salt water	Static electricity	Mounting	Symbols: ○ = Main facto △ = Sub-factor
	Crystal defect	0	\triangle					\triangle								\bigtriangleup		
Bulk Substrate	Crack	\triangle	\triangle		\triangle	Δ	Δ	\triangle	0			Δ	\triangle	\triangle				
Diffusion	Surface contamination	\triangle	0		\triangle													
P-N junction	Junction deterioration	0	0			0										\triangle		
Device separation	Impurity precipitation	\triangle	\triangle			0		\triangle										
	Mask deviation	0	Δ		\triangle											\triangle		
	Movable ion		0								\triangle							
Oxide film	Interface state		0			Δ					\triangle							
Oxide film	TDDB (time dependent dielectric breakdown)		0															
	Hot carrier		\triangle	0														
	Corrosion									\triangle	0							
Metallization Wire	Electro migration	\odot														\bigtriangleup		
Via	Stress migration	\triangle				0		\triangle	$ \Delta $									
Contact	Alloy pitting		\triangle			0												
	Al shift caused by resin stress							0	\triangle									
	Pinhole		\triangle					\triangle		\triangle	\triangle					\bigtriangleup		
Passivation Surface protective	Crack		\triangle					\triangle	0	\triangle	0							
film	Contamination		0			\triangle					\triangle							
Layer insulation film	Reversed surface		0								\triangle							

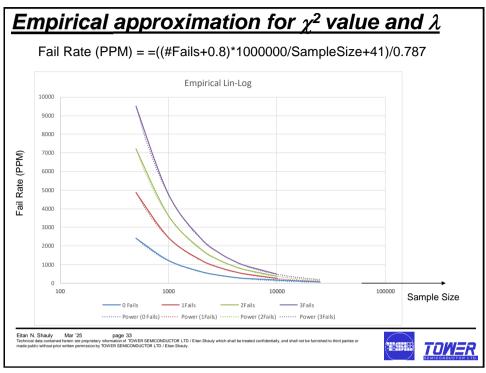
					Ar	nbier	nt con	nditio	ons f	or fai	lure	accel	erati	on				
Failure factor	Failure mechanism	High-temperature operation	High-temperature bias	Low-temperature operation	Intermittent operation	Left at high temperature	Left at low temperature	Temperature cycle	Thermal shock	Left at high temperature and high humidity	THB/USPCBT	Shock	Fall	Vibration	Spray of salt water	Static electricity	Mounting	Symbols: ○ = Main facto △ = Sub-factor
	Crack (stress non-uniformity, void)				0	Δ		Δ	0			Δ	\triangle	\bigtriangleup				
Die bonding	Chip peeling				Ο	\triangle		\triangle	0			\triangle	\triangle	\triangle				
-	Thermal fatigue	Δ			Ο			0										
	Defective substrate	Δ				0		\triangle	0			0	\triangle	\triangle				
	Peeled bond				\triangle	Δ		\triangle	0			0	\triangle	0				
	Generation of compound between metals (purple plague)	0				0												
	Damage under bond, crack		0					\triangle			0							
Wire bonding	Bonding position deviation							\triangle	0									
	Wire deformation							\triangle	0			\triangle	\triangle					
	Wire breakage							\triangle	0			0	\triangle	\triangle				
	Short circuit between wires							\triangle	\triangle			0	\triangle	0				
	Cracked package									Δ	\triangle						Ο	
	Moisture absorption (lead frame, resin interface)									Δ	0						0	
Package Resin	Impurity ion of resin					\triangle				Δ	0			0	\triangle			
Lead frame	Surface contamination									Δ	0							
Lead plating	Curing stress							\triangle										
	Corroded or oxidized lead					\triangle				0	\triangle				0			
	Broken or bent lead																	

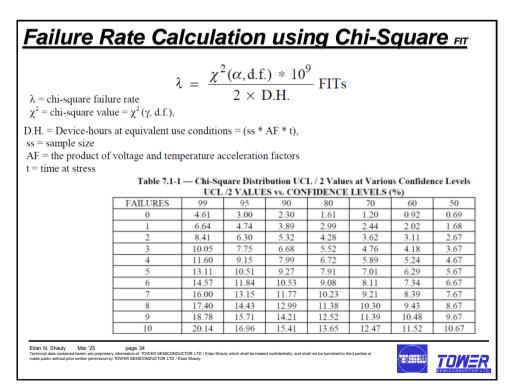
Example: Sample size calculation

Question-1: For environmental stress, 3x77 is a typical Sample size. Why ?

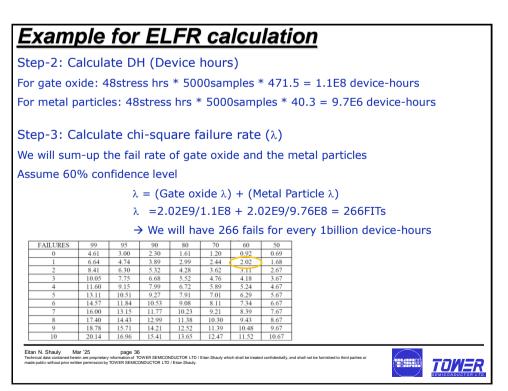
Fail Fraction UCL = $\frac{-\ln(1-cl)}{3\times77} = \frac{-\ln(1-0.9)}{3\times77} = \frac{-\ln(0.1)}{3\times77} = \frac{2.3026}{231} = 1\%$

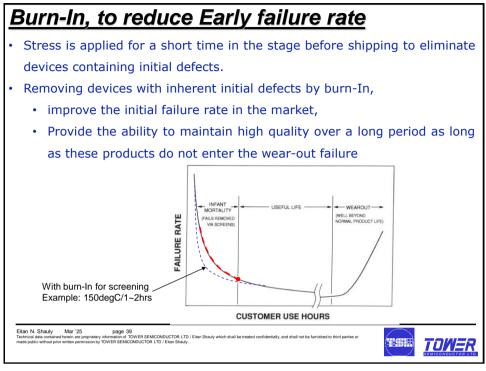

So, 0/1 accept/reject validates, to 90% confidence, a failure rate less than 1% at the accelerated condition.

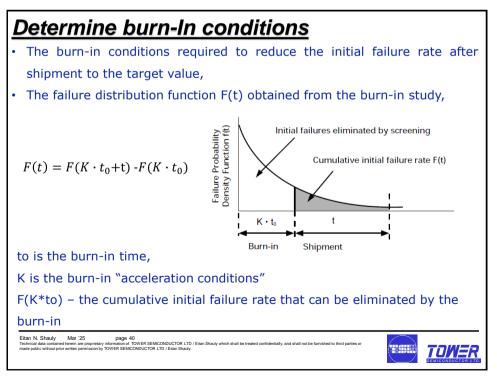

Question-2: If the stress corresponds to the lifetime (for example, 7years), then the average failure rate (FR) is:


$$FR = \frac{1 \times 10^{-2}}{7 \times 365 \times 24} \times 10^9 = 163 \, FITs$$

Etan N. Shauly Mar '25 page 30 Technical data contained Herein are proprietary information of TOWER SEMICONDUCTOR LTD / Etan Shauly which shall be tr made public whiten permission by TOWER SEMICONDUCTOR LTD / Etan Shauly.

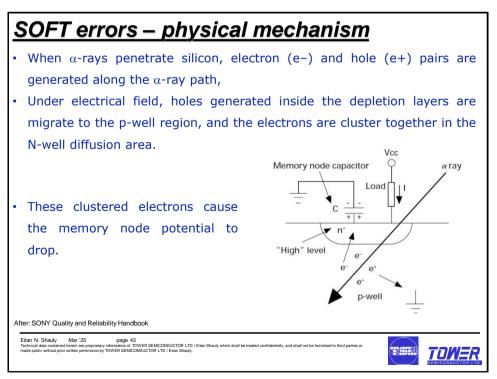

Year of Production	2009	2010	2011	2012	
DRAM 1/2 Pitch (nm) (contacted)	52	45	40	36	
MPU/ASIC Metal 1 (M1) 1/2 Pitch (nm)	54	45	38	32	
an or instant date terrigin (init)					
Early failures (ppm) (First 4000 operating hours) [1]	2-2000	2-2000	2-2000	2-2000	Infant Mortality
Long term reliability (FITS = failures in 1E9 hours) [2]	1-1000	1-1000	1-1000	1-1000	Wear-out
SRAM Soft error rate (FITs/MBit) [3]	11,000	11,000	11,000	11,000	Constant fail rate
Relative failure rate per transistor (normalized to 2009 value) [4]	1.000	0.71	0.50	0.35	
Relative failure rate per meter of interconnect (normalized to 2009 value) [5]	1.00	0.50	0.50	0.25	
Shauly Mar '25 page 31 ball conditioned herein are proprieting information of DONUET RE-ENLONGUETOR LTD Data conditioned herein are proprieting to TONUET CONTENT (T) (Earl Share)	Eitan Shauly whic	th shall be treated o	onfidentially, and s	shall not be furnished to third p	arries or

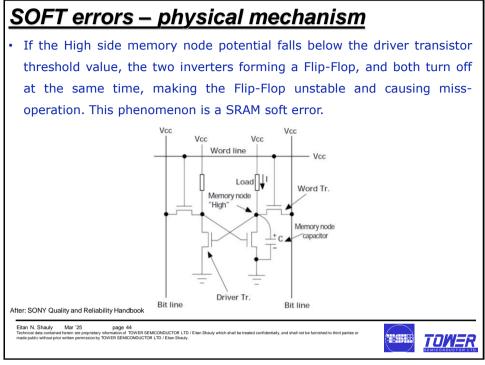


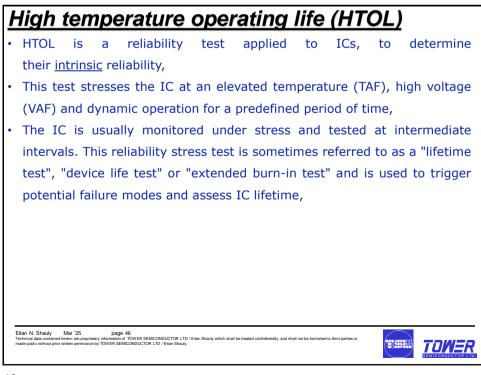

Example for E	ELFR calcu	ulation		
• Taken from JESD74				
Nominal product use	e: Vcc=3.3V, Tj=	55degC		
• ELFR stress conditio	ns and results:			
Samples size: 5	,000 units			
• Stress: Vcc=3.9	V, Tj=125degC			
Stress test dura	tion: 48hrs			
• # Fails=2: 1 for	Gate oxide (EOT	=40A), 1 for r	metal	
Step-1: calculate the A	AF for each case:			
For gate oxide (Ea=0.7eV, C	GammaV=3/V)	For Metal Particle	e (Ea=0.5eV, Ga	mmaV=1/V)
Kb 8.62E-05		Kb 8.62E-05 Ea (eV) 0.5	GammaV (1/V) 1	
Ea (eV) 0.7 GammaV (1/V) T (Low, deqC) 55 Vuse (Volt)	3 3.3	T (Low, degC) 55	Vuse (Volt) 3.3	
T (high, degC) 125 Vstress (Volt)	3.9	T (high, degC) 125	Vstress (Volt) 3.9	
TAF 77.94 VAF	6.05	TAF 22.45	VAF 1.8	2
77.94 X 6.05 = 471.5		22.45 X 1.8	= 40.3	
Eitan N. Shauly Mar '25 page 35 Technical data contained herein are proprietary information of TOWER made public without prior written permission by TOWER SEMICONDUC		ated confidentially, and shall not be furnished to	a third parties or	

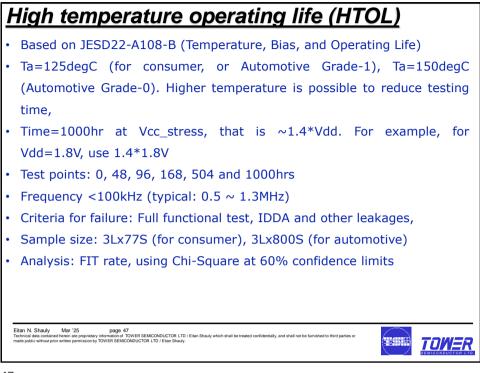
<u>Max</u>	cimu	ս <mark>տ ու</mark>	ımb	per of	fails	s san	ples	<u>s</u>	
• In	order	to pass a	ll qua	lification	tests,	with 909	% conf	idence lir	nit, the
ma	ximur	n numbe	r of fa	il sample	es, sho	uld be L	OWER	than:	
			C SS	hi2 gen [≤] (SS	4.61 ×#LOT	S) _{T1}			
Ssgen	= ge	neric database sa	imple size						
#LOTSgen	= nu	mber of lots in the	e generic da	tabase					
(SS x #LOT		ble 1 stress samp ble 1	le size mul	tiplied by the num	ber of lots sp	ecified in			
Ssgen	≥ (S	S x # LOTS) _{T1}							
# LOTSgen	n ≥#L	_OTS _{T1}							
	Та	ıble A — Ch	i squar	e distributi	on value	s at 90% c	onfidenc	e level	
	С	Chi2	c	Chi2	С	Chi2	с	Chi2]
	0	4.61	5	18.5	10	30.8	15	42.6	
	1	7.78	6	21.1	11	33.2	16	44.9	
	2	10.6	7	23.5	12	35.6	17	47.2	
	3	13.4	8	26.0	13	37.9	18	49.5	
	4	16.0	9	28.4	14	40.3	19	51.8	
Eitan N. Sha Technical data o made public with	uly Mar '25		VER SEMICONDU	CTOR LTD / Eitan Shauly wh					

			<u>r ot të</u>	<u>ails s</u>	<u>samp</u>	<u>les ·</u>	- exan	nple
 Assuming 	a databas	e of re	esults, wi	th 700	samples	s. The	number o	of
failures sh	ould belov	v:						
		Chi2 ≤	$\leq \frac{(700)(4.61)}{(3)(77)}$	⁾ =13.9	4 → ≤3			
т	able A — Ch	i square	e distributio	on value	s at 90% co	onfidenc	e level	
с	Chi2	С	Chi2	С	Chi2	с	Chi2	
0 1 2 3 4	4.61 7.78 10.6 13.4 16.0	5 6 7 8 9	18.5 21.1 23.5 26.0 28.4	10 11 12 13 14	30.8 33.2 35.6 37.9 40.3	15 16 17 18 19	42.6 44.9 47.2 49.5 51.8	
Eitan N. Shauly Mar '25 Techniai lata corplined terein are proc	page 38 verse information of TOWER SE		D / Fitan Shaviv which shall	ve treated confidential	w and shall not be furnished	n third parties or		




Random failures


- By removing the initial defect, the initial failure rate becomes extremely small → the failure distribution is close to an exponential distribution, and called "the random failure period",
- Failure mechanisms for the random failure:
 - α -rays and other high energy particles (only for memories),
 - ESD breakdown, overvoltage (surge) breakdown (EOS) and latch-up which occur at random according to the conditions of use. Note: these phenomena are all produced by the application of excessive stress over the device absolute maximum ratings, so these are classified as breakdowns (so not random failure rate).


Tomer

Eltan N. Shauly Mar '25 page 41 Technical data contained herein are proprietary information of TOWER SEMICONDUCTOR LTD / Eltan Shauly which shall be treated confit made public whittop provide written permission by TOWER SEMICONDUCTOR LTD / Eltan Shauly.

<u>Setting the exact temperature and time for</u> HTOL

- The duration listed (1000hr at 125degC), is generally acceptable,
- The exact conditions should be set based on the failure mechanisms and application environments.
- For example, with apparent activation energy of 0.7 eV, 125 °C stress temperature and 55 °C use temperature, TAF=78.6 is means 1000h stress duration is equivalent to 9 years of use:
- For exact setting the conditions, both the lifetime requirements AND information about long term or intrinsic reliability of specific wearout mechanisms, are needed

Table 2. Activation Energy				_										
Device Association	Failure Mechanism	Accelerating Failures	Typical Activation Energy () ←	Α	After: ON S	After: ON Semicor	After: ON Semiconductor	After: ON Semiconductor Qua	After: ON Semiconductor Quality an	After: ON Semiconductor Quality and rel	After: ON Semiconductor Quality and reliabil	After: ON Semiconductor Quality and reliability H	After: ON Semiconductor Quality and reliability Handb
illicon Surface Oxide	Surface Inversion Mobile Ions Charge Accumulation Surface Charge Spreading	T, V	1.0 1.0 1.0 0.7	1000	F									AFT for different Ea, Tstress=125degC
ate Oxide	Dielectric Breakdown Thin Oxide (> 40 nm) Thick Oxide (≤ 40 nm)	Ε, Τ	0.3 0.7			0.9	0.9eV	0.9eV	0.9eV	0.9eV	0.9eV	0.9eV	0.9eV	0.9eV
Metallization	Electromigration Pure AI AUSI (< 1.5%) AUSI (1.5%) AUCu (0.5%) AUCu (1% SI, 2% Cu) AUCu over TIW (>1% Cu)	J, T	0.48 0.50 0.72 0.70 0.70 0.71	100 ress = 125degC										
	Corrosion General With Chlorine With Phosphorus	H, E/V, T, V	0.8 0.7 0.53	AFT, for Tstress	0.4eV									
Assembly Process	Intermetallics Bromine-induced Halide-induced Chloride-induced	Ţ.	1.0 0.5 0.8											
	Wire Bond Die Attach	Τ. ΔΤ Τ. ΔΙ	0.75	0.1	40 0	1	,) 80	80	0 80 100	80 100	0 80 100 120	0 80 100 120	0 80 100 120 140
- Temperature, DT - Temperature Cyr	cling, V = Voltage, E = Electric Field, J - Current Der	ssity, H = Humidity						Applica	Application Te	Application Tempera	Application Temperature (d	Application Temperature (degC)	Application Temperature (degC)	Application Temperature (degC)
Failure Mechani	sm	Activation En	ergy (eV)											
Time-dependent	dielectric breakdown (TD	DB) 0.5 to 0.8												
Hot carrier		_												
NBTI		About 1												
Al electromigratio	n	0.6 to 1.0		ATTER: RENE	SAS Sem	cond	u	uctor Qu	uctor Quality	uctor Quality and n	uctor Quality and reliable	uctor Quality and reliability r	uctor Quality and reliability Hand	uctor Quality and reliability Handbook
Al stress migratio	n	About 1												
Soft error		_												
Volatile failure of	Nonvolatile memory	1 or more												

HAST vs THB ("85/85")

- Both tests are checking for moistures at non-condensing (<100%) case,
- Both ask for <1% fail, and use typical sample size of min 100samples,
- HAST of 130degC/85% as for a duration that is x10 *shorter* vs 85/85
 - 85/85 (JESD22-A101)

3.1 Temperature, Relative Humidity and Duration

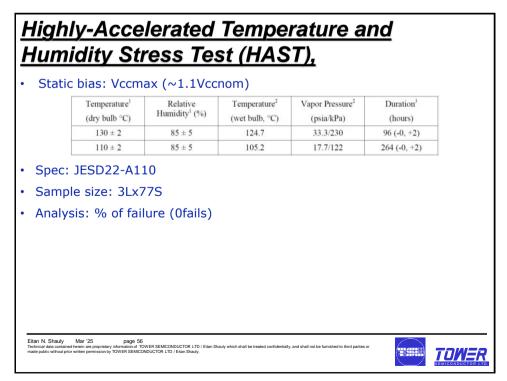

Temperature ¹	Relative		Vapor Pressure ²	Duration ³
(dry bulb °C)	Humidity ¹ (%)		(psia/kPa)	(hours)
85 ± 2	85±5	81.0	7.12/49.1	1000(-24,+168)

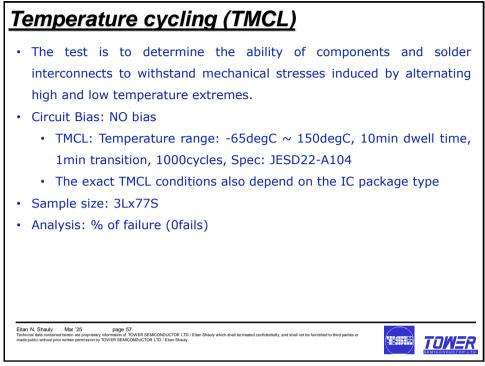
• HAST (JESD22-A110)

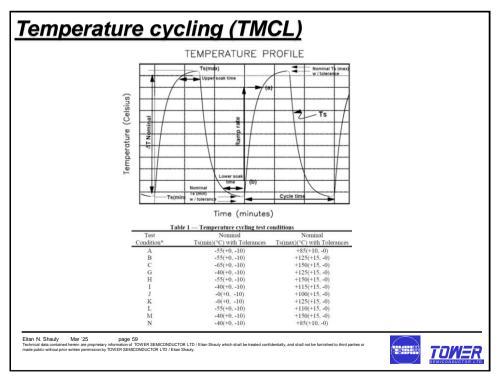
3.1 Temperature, relative humidity and duration

Temperature ¹	Relative	Temperature ²	Vapor Pressure ²	Duration ³
(dry bulb °C)	Humidity ¹ (%)	(wet bulb, °C)	(psia/kPa)	(hours)
130 ± 2	85 ± 5	124.7	33.3/230	96 (-0, +2)
110 ± 2	85 ± 5	105.2	17.7/122	264 (-0, +2)

THB Evaluation System		
• The THB Evaluation System is a reliability test system that applies		
voltage at high	temperature and humidity,	
• The features of the chamber support various types of devices while		
allowing heat generation of devices up to 500 W in high temperature		
and humidity e		
Item Temperature/humidity range	Specifications 50°C to 95°C/70% to 95%RH (50°C to 85°C)	
Temperature/numidity range Temperature and humidity distribution performance	±2°C/±5%RH (no specimen)	
Allowable heat load	500 W (at 85°C/85% RH)	
External dimensions Chamber System rack	1583 (W) × 1970 (H) × 1347 (D) mm 530 (W) × 1810 (H) × 1200 (D) mm	
DUT power specifications	Customized to your needs	
Clock specifications	Customized to your needs	
DUT power supply input cutoff	Sequence can be operated by program	
Burn-in controller (touch panel)	Burn-in time setting Remaining burn-in time monitor DUT power supply, clock signal ON/OFF, operation sequence by zone Specimen sampling during testing function	
	ESPEC CORP.	
	ge 53 and TOWER SEMECONDUCTOR LTD / Elian Shauly which shall be treated confidentially, and shall not be furnished to third parties or EMECONDUCTOR LTD / Elian Shauly.	R




<u>Highly-Accelerated Temperature and</u> <u>Humidity Stress Test (HAST),</u>


- The Steady-State Temperature Humidity Bias Life Test is for the evaluating the reliability of non-hermetic packaged solid-state devices in humid environment,
- The Highly-Accelerated Temperature and Humidity Stress Test is for evaluating the reliability of non-hermetic packaged solid-state devices in humid environments. It employs severe conditions of temperature, humidity, and bias which accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it.
- The stress usually activates the same failure mechanisms as the "85/85" (THB)

Tomer

Autoclave ("Pressure Pot" test)			
 The test is to simulate high pressure environments for the packaged IC, Potential failures might include device packaging implosion or explosion. Note: Any other physical defects resulting from this test are considered as "test failures" 			
 Circuit Bias: NO bias AUTOCLAVE: Temperature: 121degC, 168hrs, 100% Relative Humidity (RH) at 2atm's, Spec: JESD22-A102 The exact conditions also depend on the IC package type Sample size: 3Lx20S total >55samples) Analysis: % of failure (0fails) 			
Ettan N. Shauly Mar '25 page 61 Technical data contained herein are proprietary information of TOWER SEMICONDUCTOR LTD / Eitan Shauly which shall be treated confidentially, and shall not be fumished to third parties or made public without prior written permission by TOWER SEMICONDUCTOR LTD / Eitan Shauly.			

