

	The F	- Fabless – Fo	oundry relatio	ns	ship
		Infant Mortality	Long-Term Life		
		or Extrinsic Limit	or Intrinsic Limit		
	Fab Foundry	Defect reductionExcursion preventionOutlier elimination	 Basic wear out data & model Wear out monitor & WLR Process standardization 		N/4AT
	Joint Develop ment	Wafer parametric limitYield acceptance limit	Wear out failure criterionProcess customization	LURE RATE	MORENET CONTRACTOR CON
	Fabless Company	 Defect electrical isolation Product level screening SBL, PAT (1D, 2D), burn-in, cold RMA analysis & feedback 	 Use conditions & wear out avoidance rules Design for reliability Product reliability characterization Product reliability monitor Soft error & radiation tolerance testing 	Base K.C. Fabl Inter 235,	CUSTOMER USE HOURS ed on: S.Y. Pai, J.K. J. Lee, K. Ng, R. Hsiao, Su and E.N. Chou, "Reliability Framework in a ess-Foundry Enviromental," 47th Annual national Reliability Physics Symp. pp. 229– 2009 (Xilinx, UMC)
•	The fab	less designers mos	stly focus on chip desig	n, i	nterface with 3rd
	party II	P houses and inter	nal IP development,		
•	The fou	Indries mostly focu	s on technology develo	pm	ent, PDK (Process-
	Design	-Kit) establishment	and manufacturing.		
	Eitan N. Shauly N Technical data contained he made public without prior wr	Aar 25 page 3 rein are proprietary information of TOWER SEMICONDUCTOR litten permission by TOWER SEMICONDUCTOR LTD / Eitan St	LTD / Elian Shauly which shall be treated confidentially, and shall not be further analy.	ished to thi	

Mech	Geometry	Temperature	Other
BTI	W, L for logic, SRAM	25C to 125C for E _a	Variability, V _T flavors, AC Recovery
HCI	L dependence	-40C to 125C for E _a	Variability, V _{gs} dependence, V _T flavors, Off-State HCI
TDDB	Area	25C to 125C for E _a	SILC characterization, Progressive BD
GOI	STI, Gate intensive	25C	Defect Density
PID	Cumulative Metal Stack max DR	125C	Margin Assessment

Mech	Geometry	Temperature	Other
MOL	Worst-Case spacing	125C	Run length scaling
EM	Each Metal/Via Level, Wide & Short Lines	250C to 350C for Ea	Special Constructs
SM	Design Rule: Nominal & Sub- nom	150C to 275C	Nose Rules if applicable
BTS	Nominal & Sub- nominal spacing	25C to 125C for Ea	HV rule validation

JEDEC JESD47E

JESD47E (Stress-Test-Driven Qualification of Integrated Circuits) list up some specifications for:

- Wearout reliability (=physical: EM, TDDB, HCI, NBTI, SM, etc.
- Device specific (ESD, LU) \rightarrow see below
- Device qualification (Environmental) \rightarrow See below

				Req	uirements			
Stress	Ref.	Abby.	Conditions	# Lots / SS per lot	Duration / Accept			
High Temperature Operating Life	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Tj ≥ 125 °C Vcc ≥ Vccmax	3 Lots / 77 units 0 Fail					
Early Life Failure Rate	JESD22- A108, ELFR JESD74		Tj ≥ 125 °C Vcc ≥ Vccmax	See ELFR Table	$48 \leq t \leq 168 \ hrs$			
Low Temperature Operating Life	JESD22- A108	LTOL	Tj ≤ 50 °C Vcc ≥ Vccmax	1 Lot / 32 units	1000 hrs / 0 Fail			
High Temperature Storage Life	JESD22- A103	HTSL	Ta≥150 °C	3 Lots / 25 units	1000 hrs / 0 Fail			

Based on the PPM level target •

Eitan N. Shauly	Mar'25	page 13	
Technical data contained	herein are propri	etary information of TOWER SEM	ICONDUCTOR LTD / E
made public without prior	written permissio	in by TOWER SEMICONDUCTOR	LTD / Eitan Shauly.

ed to third parties or

ally, and shall not be fu

				Rec	quirements	
Stress	Ref.	Abbv.	Conditions	# Lots / SS per lot	Duration / Accept	
Non-Volatile Memory Cycling Endurance	JESD22- A117	NVCE	25 °C and Tj ≥ 55 °C	3 Lots / 77 units	Up to Spec. Max Cycles per note	
Data Retention for Non- Volatile Memory: High	JESD22-	HTDR	Option 1: Tj = 100 °C	3 Lots /	Cycles per NVCE (≥55°C) / 96 and 1000 hrs / 0 Fail / note	Only if IC include
Temperature	A117	mbk	$\begin{array}{c} \text{Option 2: Tj} \geq \\ 125 \ ^\circ \text{C} \end{array}$	39 units	Cycles per NVCE (≥55°C) / 10 and 100 hrs / 0 Fail / note	memory blocks
Non-Volatile Memory Low-Temperature Retention and Read Disturb	JESD22- A108	LTDR	Ta = 25 °C	3 Lots / 38 units	Cycles per NVCE (25°C) / 500 hrs / 0 Fail	
Latch-Up	JESD78	LU	Ta = 25 °C and Tjmax	6 units	0 Fail	
Electrical Parameter Assessment	JESD86	ED	Datasheet	3 Lots / 10 units	Ta per datasheet	
Human Body Model ESD	JESD22- A114	ESD- HBM	Ta = 25 °C	3 units	Classification	ESD/LU tests, the
Charged Device Model ESD	JESD22- C101	ESD- CDM	Ta = 25 °C	3 units	Classification	process and the
Accelerated Soft Error Testing	JESD89-2 & 3	ASER	Ta = 25 °C	3 units	Classification	protection scheme
"OR" System Soft Error Testing	JESD89-1	SSER	Ta = 25 °C	Minimum of 1E+06 Device Hrs or 10 fails.	Classification	

<u>F</u>	oundr	y Physical reliability – Level-1 (FEOL)
		Generic Foundry Qualification
	TDDB	V _{max} , 10yr DC, 125°C, 1-10mm² area, 100-1000ppm
	BTI	V_{max} , 5-10yr DC, 125°C, 100-1000ppm, 10% ΔI_D or 5% $\Delta V_T/V_{nom}$
	HCI	V_{max} , 0.05-0.2yr DC, 125°C, 100-1000ppm, L _{min} , 10% ΔI_D
	GOI	Gate Dielectric Defect Density limits for Gate/STI intensive structures
	PID	Fully stacked antenna checked versus reference
	BJT	BJTs qualified to specified fixed acceleration criteria
After: Eita Tech mad	B. Parameshwaran, In N. Shauly Mar'25 Inical data contained herein are pr e public without prior written perm	"CMOS FEOL relability in Advanced Nodes – A foundry perspective," IRPS Tutorial, 2014 (GF) page 17 preserve information TOVER SEMICONDUCTOR LTD / Etan Shauly which shall be tested confidentially, and shall not be furnished to third parties or signify TOWER SEMICONDUCTOR LTD / Etan Shauly.

	Foundr	ry Physical reliability – Level-1 (BEOL)
		Conoria Foundry Qualification
		Generic Foundry Qualification
	EM	10yrs , 1e-9% CDF, 100°C, J _{max} exceeding J _{use}
	BTS	Vmax, 10yr DC Lifetime, 125°C, 100ppm, metal RL 50-100m and via 0.5-1B count
	SM	No failures on DRC structures after 1000hr stress at 150°C- 275°C
	Passives	Passives qualified to specified criteria
At	ter: B. Parameshwarar	n, "CMOS FEOL relability in Advanced Nodes – A foundry perspective," IRPS Tutorial, 2014 (GF)
	Eitan N. Shauly Mar'25 Technical data contained herein are made public without prior written per	page 20 propriesary electromations of TOVER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or management of TOVER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or the treatment of TOVER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to third parties or the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confidentially, and shall not be funished to the treatment of tovER SEMICONDUCTOR LTD / Etain Shauly which shall be treated confident

Fo	oundry	y Physical reliability – Level-2
(E	nvirol	nmental)
		Generic Foundry Qualification
	ELFR	Dynamic Bias: ~ 1.4xVDD, 125C, 24-48h, <1000dpm (60%CL) typical
	HTOL	Dynamic Bias: ~ 1.4xVDD, 125C, 500-1000h, < 100 FIT typical
	тс	JEDEC, -55C to 125C, 300 cyc / 500 cyc /1000 cyc, No Fails
	HAST	JEDEC, T=130C, RH=85% P=33.3psi, Static Bias: 1.1xVDD, 96 hrs, No Fails
	ТНВ	JEDEC, T=85C, RH=85%, Static Bias: 1.1xVDD, 168h / 500h / 1000h, No Fails
	HTS	JEDEC, 150C, 168h / 500h /1000h, No Fails Allowed
	ESD	JEDEC, Class 1C - HBM ≥ 1000V, Class II - CDM ≥ 250V, No Fails
	LU	JEDEC Class 1: V: ~ ±1.5xVDD, I: ± 100mA @1.1xVDD, No Fails
	SER	Alpha & Neutron SER
	CPI	JEDEC, Pre-Con, TC, HTSL, uHAST
ter: B. I	Parameshwaran, "	CMOS FEOL relability in Advanced Nodes – A foundry perspective," IRPS Tutorial, 2014 (GF)
Eitan N. Technical made publ	Shauly Mar'25 data contained herein are prop lic without prior written permiss	page 23 retery information of TOWER SEMICONDUCTOR LTD / Eitan Shauly which shall be treated confidentially, and shall not be furnished to third parties or ion by TOWER SEMICONDUCTOR LTD / Eitan Shauly.

The Found	lry re	liab	ility '	"TQV	/"				
• TQV, includes:									
 structures for 	or devic	e calibr	ation a	nd SPIC	E extra	action,			
• DRV (design	-rule-v	erificati	on) ana	lysis,					
 physical relia 	ability c	haracte	erizatior	n and qu	ualifica	tion,			
Analog and I	RF char	acteriza	ation,						
 physical stru 	ictures	for fab	monito	ring, et	с,				
 selected des 	ign IPs	,							
 Several type 	bes of	large	SRAM	array	, for	defect	densi	ty and	
environment	tal qual	ificatior	n.						
									1
Technology	180nm	130nm	90nm	65nm	40nm	28nm	20nm	16nm	
SRAM Size (Mb)	2	8	16	32	64	128	256	512	
Eitan N. Shauly Mar'25 pag Technical data contained herein are proprietary information	e 26 of TOWER SEMICONE	UCTOR LTD / Eitan Sha	auly which shall be treate	d confidentially, and shal	not be furnished to thi	d parties or	\frown		-
made public without prior written permission by TOWER SE	MICONDUCTOR LTD /	Eitan Shauly.	,	,,				EMICONDUCTOR L	2

The Foundry reliability TQV and WLR

- After qualification, this technology engineering vehicle will be used on a regular basis for:
 - monitor the line (no splits), introduce Eng X wafers per month,
 - as a vehicle for yield enhancement, introduce Eng X wafers per month,
 - for qualification of any process change in the line, etc.

page 29 mation of TOWER SEMICONDUCTOR LTD / Eitan Shauly which shall be tre ER SEMICONDUCTOR LTD / Eitan Shauly.

 The test parameters and failure criteria, the testing method and the model to be used are detailed at the platform reliability qualification spec. However, in many cases, the formal success criteria are finalized by the foundry, after introducing additional aspects into consideration such as application, typical chip size, and layout style.

TOMER

Eitan N. Shauly Mar'25

JESD47E (Stre	ess-Test-Drive	en	Q	ua	lifi	са	tio	on	0	fΙ	nt	eg	ra	te	d	Cir	CI	Jit	s)	"F	oro	pp	os	e″	S	on	۱e	
guidelines for	qualification	ba	se	d	on	t	٦e	р	ro	ce	SS	c	าล	ng	e													
		Ta	ble	4 6	Jui	deli	nes	fo	r M	Lajo	or I	Pro	ces	s C	han	ige	Sel	ect	ion	of	Tes	sts						
R=Recommended C=Consider	Process Attribute	HTOL	E L F R	L T O L	H T S L	NVCE+DR	LU	E D	ESD.HBM	ESD-CDM	A S E R	THB/HAST	T C	U H A S T	B P S	BS	S D	S B S	M	V V F	C A	GFL	L	L T	EM	нс	N B T I	T D B
١	Active Circuit	с		С																						R	R	
Re-layout _	Major Circuit Changes	R		С			С	с	С	С																		
	5% to 20% Die Shrink	R	R	С	С		R	R	R	R	R	R	С												С	R	R	
	Lithography	С		С				R																		С	С	
	Doping	С					С		С																	R	R	
	Polysilicon	С				R							R													R	R	С
	Metallization	С	С		R							С	R	С			_								R			
Deserves also and	Gate Oxide	R	С	С		R		С																		R	R	R
Process change –	Interlayer Dielectric Non low-k	С	С		С								С												R			С
	Low-K Dielectric	R	С		R							R	R												R			С
Process change –	Passivation	С	С			С						С	С	R			_											
	Contact	С	С		R	С		_													_				R			
Ļ	Via	C	С		R	_	_	_					_				_			_	_	_		_	R	_	_	-
	Wafer diameter	R		С	C	R	_	_	С	С		C	R	C	_	_	_	_		_	_	_	_	_	R	R	R	R
	Fab site	R			к		_	_	_			C	к	C	_	_	_	_		_	_	_	_	_		_	_	-
HVM –	Qualified Product	С			С				R	R		С	R	R	R	R	R	R	R	R	R	R	R	С				
	Leadframe plating																R						С					
	Leadframe Material						_	_					С				R			С	С	_	R					
L L	Package																											