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Topics

1. Introduction - what is HCI
2. Introduction - carriers' mobility

Introduction - currents and other parameters in planar MOSFET operation (Vt,
Id, Ib, Is, CLM, SCE)

HCI - mechanism and modeling

DAHC (Drain Avalanche Hot carrier), CHE (Channel hot Electron), SHE (Substrate
Hot Electron), others

Luck Electron Model,
Interface charge generation,

HCI degradation under worse case conditions,

© »® N o

HCI qualification — measurement, analysis and modeling
10. HCI under AC conditions,
11. Process solutions to reduce HCI: spacer with LDD implant,

12. HCI scaling and integration
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Mobility - Introduction

» Carriers mobility reduces for higher BULK concentration.

« In the bulk, the charge mobility is determined by the amount of lattice
scattering (or Coulomb scattering) and ionized impurity scattering,
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Effective mobility as function of the bulk substrate doping level. (left) electrons, (right) holes.
(®)[10,11,15], (<) [70], (@), [71], (O) As [72], (m) P [72], (%) B [72].
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Mobility reduction

« At high electric fields, the carrier velocity saturates.

» The carriers are squeezed into a thinner inversion layer and thus subject

to more scattering at the interface due to roughness.

Velocity: Mobility * Efield
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Interface scattering

«  The mobility of the carriers in the channel is lower than in the bulk, due

to additional scattering at the interface (due to vertical E field, surface
roughness and Coulombic interactions with surface charges).

« As the vertical field increases, it confines the inversion layer charge ever

closer to the interface and increases scattering.
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Mobllltv - Introduction

Carriers mobility reduces at higher dopant concentrations and under
higher electric fields.

e Normally encountered in short channel length devices due to velocity

saturation effects.
I: Low field, Lattice scattering

11: Acoustic Phonon scattering (Vds) field:
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I1I: Due to surface roughness degradation:
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e The dependency of the effective mobility in the inversion layer on the
effective electrical field is by three dominant scattering mechanisms.

Log Effective Mobility

/ Roughness (1f1=xE?) M= Gsurf .
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1l 1

Log Effective Electrical Field, E,
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Effective mobility Deqgradation

e The channel mobility is also degraded by the velocity saturation at high
electric fields.
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The universal curve for effective mobility vs. effective vertical field at low perpendicular
electrical field. (right) Electrons, (left) holes.

(For left only) Dashed line - MEDICI default parameters [15]; (O) experimental results; solid line
- calculated model results. The gate oxide thickness was 132.5A.
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Basics of CMOS Transistor

Gate Stack

- Dual workfunction

- Low sheet resistance
- No boron penetration

- Tight dimensional control

/TIS\Q

Gate Dielectric

- Very thin to improve
SCE and current drive

- Limitations: defect density,
tunneling current, reliability

Dielectric
Spacer

T ——

Shallow Trench Isolation
- Litho limited dimensions
- Thickness indep. of size

b-
Source/Drain Pt

- Shallow extension
to reduce SCE
- Profile optimized

Non-uniform Channel
- Improve SCE
- Halo to counter V¢

- Lower capacitance for reliability + rolloff
- No extended thermal erformance - Reduce junction
oxidation - Low sheet rho capacitance
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The density of the charge at the inversion layer, is proportional to
Vgs-V(X)-Vt.

- If V(X) approaches Vgs-Vt, than Qd drops to 0

| pineh—oft |

Y

X2
V(x{} = Vgs—Vn Vixz) = Vas—Viu

0 Xy Pinch-off behavior 0

If Vds is >Vgs-Vt, the inversion layer stops at X<L. The channel
is “PINCH-OFF”.

For High Vds, the point Qd=0 move to to the source side - at
some point along the channel, the local potential difference
between the Gate and the Si/SiO2 interface, can NOT support
the inversion layer.
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Source and/or Drain Junction breakdown

_durinq operation

N510/0.6um On Breakdown, wafer5 B G

ﬁ CLM (w/o Silicon damage)
BOEE \ I

Un-control current from S/D (w/o
resistance) that heat the channel
and melt the silicon.

CHE

wipw] After: TS50 (6V) for HV
— D -Vl Ve = eVt VS applications

During operation, Vds goes up. If Vdd is high (for HV application for
example), above the Vbr or the junction, the S/D will be shorted
(together with BJT opening) leads to un-control current. Device
destructive.
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Channel Length Modulation:

In the saturation region, as VD1, the depletion region near drain
expands, the pinch-off point of the channel moves back towards
the source. The effective channel becomes shorter, ID 1 because
it is oc 1/Leff.

P
L
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Vt reduction due to Charge Sharing Effect
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Until now, we calculated Vt as function of: Vfb, Cox (Tox) and
Substrate doping. We did not include any L dependence.

But for small L (<1.5um), Vt reduced as function of L. This call:
Vt roll-off
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e For long channel, the charges contained
in the surface depletion region of the
substrate may be regarded to be
induced solely from the field created by
the gate voltage.

oue | ® As channel length is reduced, the fields
originating from the source/drain

regions may influence the charge
distribution >effecting device
characteristics such as the threshold
voltage control and device leakage.
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Charge Sharing Model

Vt(Short_ Channel _ Effect) =Vt(long) — AVt

The n+ S/D induced a significant amount of deplétion charge,
and the effective Qdepletion is lower for lower L

Now we will develop that effect:
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MOSFET Introduction — CMOS Scaling

4x10% E E - I/'DS - I/'DS_-IT
§ e AL

g -

2- E,..x — peak of the lateral field

E T AL - length of the pinch-off region
P |

0 T
s| B

Channel position

e The electric field near the drain is increasing and the peak field is reached
at the drain

e This rise in electric field causes the carriers to gain the energy from the
field leading to ‘hot carrier’ effects in MOS devices
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Different currents running in the MOSFET

Isource Idrain

Igate

| Jrr—
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Hot Carrier Injection — definition, Mechanism

e Injected carriers which are not trapped become gate current,

e Carriers flowing into the substrate are detected as substrate current.

. A high electric field area is formed near the
drain when a high voltage is applied to the DAHC (_dra_ln avalanche hot carrier) |njecl|on
drai Impact ionization by the high electric field near the drain
rain. (>105 MV/cm)
D Electrons flowing out of the source cause Maximum degradation condition: Vg = 1/2 Vd (Isub max)
impact ionization by the high electric field -
near the drain, and generate electron-hole Source (Vs Gate (Vg) Drain (Vd)
pairs. A
Gate Is g Id
. Most of the holes flow toward the insulation film Gate electrode
substrate, becoming substrate current, \ ) /_

. Some electrons that gained high energy

overcome the potential barrier and are -
Depletion
region

injected into the oxide film where they
Channel zone

P-type Si substrate
. This causes degradation of the MOSFET
lsubi

become trapped.

. Threshold (Vth), transconductance (gm)
NMOS

are shifter and leads to IC degradation
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Hot Carrier Effects 1

O—Lhanme

- Clrrenr 9 "
____.e\\-__,/ [2] Carrier multiplicution
_E Additional via impact fonization
electron injection 3 \
and carrier flow Holes
into drain swepl Il“ﬂ

bulk ‘-—.. ——
sub i' Ry [&] potential drop caused by hole current

Back-to-source forward biused

L

1) Hot carriers can have sufficient energy to overcome the oxide-Si barrier. The “lucky”
are injected from channel to the gate oxide cause gate current to flow. Trapping of
some of this charge can change Vt permanently

2) Avalanching can take place producing electron-hole pairs - Generate Isub
3) The holes produced by avalanching drift into the substrate and

4) are collected by the substrate contact causing Isub IR drop due to Isub, cause
substrate-source junction to be forward biased causing

5) electrons to be injected from source into substrate. Some of the injected electrons
are collected by the reversed biased drain and cause a parasitic bipolar action.
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Hot Carrier Effects — Substrate Current

1) When the electrical field near the drain is very large (> 0.1MV/cm), some electrons
coming from the source will be energetic (hot) enough to cause impact ionization.

2) This creates electron-hole pairs when they collide with silicon atoms.

3) The substrate current Isub thus created during impact ionization will increase
exponentially with the drain voltage.

=20, -7, Jexp - — Do
4)  Awell known Isub model [C. Hu] is given as: “=* g " s lSSH T

I
i i
5) Isub will affect the drain current: The total drain current will change because it is
the sum of the channel current from the source as well as the substrate current. The
total drain current can now be expressed as follows

o =dtat+I,
(T — Ve
(Ve — Vs
= Lud 1+ 5 5
e )
Faf) s — et
Eitan N. Shauly Mar '25
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HCI degradation = High lgate current

+ As Vg increases, the vertical electric Igate vs Vgs (at different Vds)
field in the gate oxide near drain W
becomes favorable for collection of L
carriers. <l
« But at the same time transistor moves ;
toward the linear region from the & 0
pinch-off region, and therefore the
lateral electric field in the pinch-off ol
region gradually disappears. e S

« Since variation of lateral and vertical electric fields are opposite to each
other there is a point where Ig has a maximum.

« The value of Vg at which this maximum happens is ~Vds/2 (for 5V
technology) and ~Vds (for 1.2V technology).
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HCI degradation = High Isub current (DAHC)

* The generation of electron-hole pairs in an Isub vs Vgs (at different Vds)

avalanche process is proportional to: (1) 10°

strength of electric field, (2) the number of 10

primary carriers flowing in the channel.

=
o

* For low values of Vg above threshold,

[y
o,

the transistor is in deep saturation and a

(i
o,

Isub, Substrate Current [A/1]

pinch-off region is formed near the drain
which results in a strong lateral electric field 1

in that region. However, the drain current Id 107

IS
o
o

is low. Ing[V]

+ As Vg increases Id increases but transistor comes out of saturation region
gradually (low electrical field) but with higher drain current.

« Isubis maximum at Vg=Vvd/2 (for 5V MOSFETs) and ~Vds (for 1.2V MOSFETSs).

« The biasing condition which causes maximum Isub = maximum damage called the
“Worse case conditions”.
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HCI deqgradation = High Isub current

TPS65PMB H101473.00F#2 Isub vs. Vg

+ Same data at different representation

TPS65PMB H101473.00F#2 Isub vs. Vg

made public without prior written permission by TOWER SEMICONDUCTOR LTD / Eitan Shauly.
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Where the currents goes too ? Definitions

TS13SL, N12, W/L=10/0.13, Vds=1.2V
0

Vgs (V)

TS13, N12, Vds=1.2V

£
E-
z e /Ibulk
5 0.001 E
3 E
00001 =
E ——Idrain
18005 Abs(Isource)
1E-006 ——Abs(lgate)
10007 b Abs(Ibulk)
ooe b Ly b b T
o 0.4 0.6 .

12

Isource

Igate

Idrain

| A—

Tout (Idrain)=Isource+Igate+Ibulk

Vgs Id

Is

lg

Ib

1.200 5.40E-03

-5.40E-03

2.26E-08

-6.49E-09
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NSH shows similar HCD degradation to planar
devices

p-planar FET p-NW FET

o L. L,=28nm
OT ~n(;ns B EOT ~1.2 nm
Si chanr‘\elnm i Si channel
= high-k gate stack
high-k gate stack gN-K &

Vs V] 2

+ Qualitatively: same effects in nanowire as in planar technology
+ Peak degradation at VG = VD
« “Mid-Vg"” HC: electron trapping can become noticeable
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In the process flow,

» Poly Patterning
« (1)...
 (2)...

(3) Mask, N+ S/D Implant, Mask
removal
(4) Mask, P+ S/D Implant, Mask
removal

AccY Spol Magn Del WD Exp F———— 8600 nm

Poly Gate Poly Gate
P-Well N-well
25 page 72
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Hot-E Reduction using LDD Spacer Schema

Leciure 20
Spacer left when CVD Si0O,
0.26um is just cleared on flat region.
3

0.05um /

=

@ n* implant
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NLDD, PLDD Extension Implants
1) NLDD Extension Mask
2) NLDD Implant (n-Type Implant)
3) Photo-Resist Removal
4) PLDD Extension Mask
5) PLDD Implant (P-Type Implant)
1) Photo Resist Removal

Epitaxial layer - P-
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LDD Spacer Integration

Low Temperature Nitride
\ / Liner Oxide

3

After: Design Rules in a Semiconductor Foundry Edited by Eitan N. Shauly, 2022 Jenny Stanford Publishing
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N+ S/D, P+ S/D Implants

1) N+ S/D Mask

2) N+ S/D Implant (n-Type Implant)
3) Photo-Resist Removal

4) P+ S/D Mask

5) P+ S/D Implant (P-Type Implant)
1) Photo Resist Removal

Pleas ignore SiGe
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Drain Engineering — Lightly Doped Drain
(LDD)

e Introduced for the first time, at <1lum technology (0.8um), in order to
minimize HCI in modern MOSFET technologies.

e Extension (LDD) implants: G::
- Shift the position of the peak 'g
electric field in the depletion E
region toward to drain and % CD“EN,,UN(\
deeper (far from the gate-oxide ey
- Reduce the magnitude of the ;: v {
field T .- E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Position Along Surface {m)
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After: Sim Poh Ching, Chu Tsui Ping and Yook Hyung Sun,

L D D I m p I ant Op ti m i Zati O n “Studies of the critical LDD area for HCI improvement,” 2008

IEEE International Conference on Semiconductor Electronics,
2008, pp. 622-625.

Electric Impact
Process Parameters Field Ionization Gate
(x*e5 Vem™) (lglxl Cm’JSJ]
Reference 5.85 29.66
LDD Energy T Dose | 5.08 29.38
LDD Tilt Angle T 5.02 29.33
Tilt LDD Twist Angle | 4.44 29.29

« There are two peaks on the lateral Reference LDD Energy {

Electric field distribution. The max Fig. 3 Simulated electric field for reference LDD and
LDD energy increase dose reduce devices.
current path will goes through the saddle

point of these two high field regions. Gate L] Gate l

« Increasing the implant energy and

reducing dose exhibit a lower electric

field peak.

* The impact ionization is reduced and | p.recence | LoD Edergy  Dose l
driving further away from the silicon Fig. 4 Simulated impact ionization for reference LDD
surface N33, X-Fab data and LDD energy increase dose reduce devices.
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LDD Implant Optimization

6

10
10°
4 =
10 : T \\\HHE 2 10
r ] F]
g [ %0 o i 5 10
% I [ ] %@ .. ] § 10
:‘_:'; | NopLDD Implant [ %10—1
o 100 [ ] 7 g
< F [ ] ] < 1
3 r .. 1 10
i o [ ] ° 1 13
3 + ° i 10
a L J 0 1 2 3 4 5 6
[Vgs| [V]
100l il il Measurements of pMOSFET with gate length of 0.5u, W=0.36p
10 10° 10 10® and gate oxide thickness of 115A. (a) Experimental determination
of threshold voltage measurement, (b) experimental determination
pLdd Implant Dose [BF,/cm?] ; N
Experimental determination of the dependence of peak substrate o)f‘(suk;stsrii;e c‘urreen\t/at different Vp, conditions: (W) -4.5V, (®) -5V,
current on pLDD dose for sub-micron pMOSFET devices. (®) (%) 5.5V, (#) -6V.
Transistor gate length of 0.8 and gate oxide thickness of
150A (O) Gate length of 0.6p and gate oxide thickness of V —V A
130A E _ DS DSAT . r=
A. = T =
m I m
sub max

EitanSh, 5V data
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CMOS Reliability
Integration and
Engineering (Part-1)

The effect of technology
scaling on HEI

Dr. Eitan Shauly,

Tower Semiconductor
(Tel) 972-4-6506570, eitansh@Towersemi.com
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Hot Carrier Effects in DGO (Thick Gox)

33V IO NFET

o0&

06

D4l -

Mormalized Hot Carrier Lifetime

1 1 1
D.18LV D.15LV 0.13G 90G
Technology Generation

* 3.3V I/O NFET hot carrier lifetime trend. The AC and DC performance is
the same for all generation. After: H. C. Diaz et al, IEDM 2003.

Eitan N. Shauly ~ Mar 25 page 90
Technical data contained herein are proprietary information of TOWER SEMICONDUCTOR LTD / Eitan Shauly which shall be treated confidentially, and shallnot be furished to third parties or
ission by TOWER SEMICONDUCTOR LTD ! Eitan Shauly.

90

19



CMOS Reliability
Integration and
Engineering (Part-1)

HCI Qualification

Dr. Eitan Shauly,

Tower Semiconductor
(Tel) 972-4-6506570, eitansh@Towersemi.com
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HCI Qualification

Test |ltem Test procedure and judgment

Structure N and P MOSFETs with minimum and nominal gate length.
(Sample size) |(3L/3W/5S for each stress condition)

Monitor the MOSFET Idlin (or Gm or Vilin — application
depended) at different drain-source voltages where gate-
source voltage is at worse-case condition (peak of Isub or
Vgs=Vdd/2)

Test Method

HCI

Success LT>0.2years (or 0.05years [2]) at 1.1Vdd, RT or 125degC,
Criteria CumF=100~1000ppm

Substrate Current model: LT = C * (Isyp)™™, Isub is the
substrate current, m is the acceleration exponent
Drain-Source Voltage (Vds) model: LT = C * exp(B/Vys). b is
the voltage acceleration factor

Typical Model

After: Design Rules in a Semiconductor Foundry Edited by Eitan N. Shauly, 2022 Jenny Stanford Publishing
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Measurement Procedure & Data Analysis —
Stress Conditions

[ et suma o) S WiL=10R.55,m (25C) [ et subma s, e s v =oi0.85m 2509
: PR TRT. T Y VY VR Y

1
[ ; 100 ¢
12 . F
0 [|—vd=3.63¥| | t 7£
B vy | 3 e Vi
Y i I -~
38—V i b,max
3 |—vesaev | 3 -
g 64 I « 10 e S
3 |—vd=40v | E e
S oA Vi 4 ——
L — 1 Fl "~
I i
0

&
=
< .
o
[

e Ib-Vgs is measured for all selected drain bias stress conditions

e Test is performed under Vg =Vg(Ibmax) condition (worst case)

page 93
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Measurement Procedure & Data Analysis

o 3.3V NNICS 10:0.35 HCI
E’g‘ Source/Drain Cument v Orain Bias HCI Parameter Shift NMOS WIL=1010.35um (Temp.=RT)
7 6 BIF 230usull]| 5EIED ], 4 MELBM); ABIELH, 7 ] 0
8 mA- — m m
& mA o} — B
% ¢ i 3V
4ma L et 239V
F oA S
3mA-] g PP
2mad] i
1 mA 0 .
1.E+04 1E05 1.E+06 1E+07 1.E+08
L T
ov 1I\.‘ 2I\J v StressTime[sec]
RN QTN Rt

o Parameter shift is calculated from: Al,(t)= (I) © ¢, 100 (%]
e Since typical degradation follows a power-law l\j/vith time, it should be fitted to the
following equation using a least-square method:
Al (t)=

o tfail is defined according with specified degradation failure criteria by interpolation

or extrapolation from the data based on C and n values

Eftan N. Shauly  Mar 25 page 94
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Measurement Procedure & Data Analysis —
Lifetime

HCI Parameter Shift NMOS WIL=1010.35um (Temp.=RT} Probability Plot (Fitted Linear)
Lognoenal - 80% 1

Complete Dsfz - WL Estirnates

vd
-—=—- 3.0V
37V

Tabheaf Shafetiz
e @b ADMFC

la(sat) shifrv

Percent
S5 888 8 8

| 12,360 010K 2325 0
- LR LIWE 1503 0
155574, 04995 35058 0

T E emaw

01 B
1E+04 16405 1 E406 16407 1,E408 11E+05 1E+06 1E+07
StressTimesec] Time-to-failure, sec

e 0.1% cumulative fails is usually required

e Large set of samples should be tested in order to build the distribution

page 95
ary information of TOWER SEMICONDUCTOR LD / Eitan Shauly which shallbe treated confidentiall, and shal not be funished to third parties or
by TOWER SEMICONDUCTOR LTD / Eitan Shauly.

95

HCI Minimum LT, frequency dependence

« Classical HCI, assume that the duration time for generation of e-h, is
limited to the transient ON-OFF.

« This is mostly true for DIGITAL MOSFETs, and NOT true for Analog
MOSFETSs.

B NMOS 7, =1
Voo >O,
PMOS £ ’ =0
> Time
NMOS i
]DD—>GND
Typical LT spec: >0.2Year

Eitan N. Shauly ~ Mar 25 page 101
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HCI Minimum LT, frequency dependence

« Study for Dynamic (AC) hot-carrier degradation and comparison to
statics (DC) degradation, found a correlation time factor (TF) to be used,
as next:

NTF = L PTF = i
[ trise f- trau

where f is the frequency of operation, t, is the rise time and t, is the fall time.

Technology 0.18um  0.18um  0.18um  0.18um 0.13um 0.13um  0.13um 65
Vdd 1.8V 3.3V 4.1V 5V 1.2V 2.5V 3.3V 1.2V
CVI/I ps/gate 27.3 43.4 59.4444 83.4 21.3 38.666 43.4

f MHz 150 150 150 150 300 300 300 800
Time Rise Sec 1.00E-10 | 2.00E-10 | 2.50E-10 | 3.00E-10 5.00E-11 7.50E-11 | 1.00E-10 | 1.25E-11
Time Fall Sec 1.00E-10 | 2.00E-10 | 2.50E-10 | 3.00E-10 5.00E-11 7.50E-11 | 1.00E-10 | 1.25E-11
N-AC Factor 267 133 107 89 267 178 133 400
P-AC Factor 667 333 267 222 667 444 333 1000

Ref: K. N. Quader, P. Feng, J. T. Yue, P. K. Ko and C. Hu, “Hot-Carrier-Reliability Design Rules for Translating Device Degradation to CMOS Digital Circuit Degradation,”
IEEE Trans. Electron Devices, vol. 41, p. 681, 1994.
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Hot Carrier Injection — L dependency

L=1um

L=0.5um

L=0.35um

10 e b b b b
0.9 1 11 12 13 14 15 16

Vds (V)

o
<Y

« Shorter L, means much higher lateral electrical field, higher impact
ionization and shorter life-time,
« Lower temperatures, increased Isub due to longer mean free path

between scattering events,
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Hot Carrier Injection — L modeling

wvd (V) - drain voltage

also for shorter Ls, to verify reliability stability

[|—— 1-22v nmos
i B
100 LT =Crexp|—]~L"
g E Vy
£ L
g 10
bl E Parameters 1.2V nMOS 1.2V pMOS
;: 1 ; B (1/(1/V) 46.98 39.70
E g n 1048 7946
01k C  (yrs) 9.272¢-04 1.982e.04
L L L L L L . o ) N
0'06.05 0053 008 0085 007 0073 008 LT (yrs) : Lifetime for 10% Idsat shift, 0.1%cum.

e The strong dependency on L, pushed JEDEC to request LT calculation

vas B (1/(1/V)): voltage acceleration factor
L {(um) :channellength
n - exponent for channel length dependency
C (yrs) - proportionality coefficient
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HCI — Temperature Dependence
e HCI LT is reduced with decreasing

Temperature Dependence

NMOS W/L=10/0.18um (10% Idsat degradation)
30C
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temperature, L = =
« At Jow temperature: thermal ;
vibrations of Si atoms are small, 53
so less energy loss of hot carriers, ELM ol
so HCI degradation is more severe. i
« Note: it is DIFFERENT for LDMOS et Dopendence
devices, where self-heating play a veae T e
major role. gre Faw)
« Same temp dependency for jico
FinFETs (NFET=0.026V, lwew " e |
PFET=0.1eV) and NSH (0.07eV, rvos |- :{ m \\3
0.17eV)
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FinFET — Overall Structure

T ragion TiN Electrode Gate

Vas > Vr I enlarged beiow

e '—iT_‘ _J‘xun >¥ e ]

| uncion a5
Ceplelion Region Jntion
‘\-7- Gate-Induced D_P;:m"ﬁ‘awm
Bulk Deplefion Region

SUBSTRATE (p-5i)

Vg doped Silicon Fin
e SCE (Short Channel Effects), GIDL, DIBL, SILC limitations
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Hot Carrier in Tri-Gate (and comparison to planar)

* (110) Sidewalls —increased bond density and Dit
» Sidewall carrier “capture”: Sidewalls more likely to capture carriers

» Electrostatic: fully depleted modulated fields
« Junction profiles: lower doping requirements reduce junction field.

Energetic
carriers
scatter
into gate

After: S. M. Ramey, “Transistor Reliability in the FinFET Era”,
IRPS 2019
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Hot Carrier for FiInFETs: (100) (110) Surface

+ As Wsi(fin width) is reduced, sidewalls play a larger role,
« FinFETwith (110) has increased hot carrier degradation over (100), due
to density on (110)

20 [T p———r—rrT y—p—r———ry —
Stress condition 0° (110 side surface)
VGS=U;’)S=1‘5V

15 F W, =50 nm, L =100 nm <
T, .=1.8nm Qq'/

o top o
| Tm_siue:&ﬁ nm

g
7
9

@l |
41.00 ?.._‘d.——e o

0 b i a1 aasxl L Al aaainl 3 | = s aail
10" 10° 10° 10
Stress Time (sec)

Agm max;gm ma( {%)
S

()}

After: S. M. Ramey, “Transistor Reliability in the FInTET Era, IRPS, 2019
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Hot Carrier for FInFETs: fin width dependency

« Narrow fin width enhance HCI degradation,
2.2

Normalized Degradation
WO v =
<
%

(=]
L

Fin Width [AU]
« This might be related to the complex hot carrier mechanism for

FinFETs/Trigate devices:
* (+) Better electrostatics
* (+) Lower dopant in fin
« (-) higher sidewall Dit, increased capture and local thermal effects.

After: C. Prasad, "Advanced CMOS reliability challenges,"” Proceedings of Technical Program - 2014 International Symposium on VLSI Technology, Systems
and Application (VLSI-TSA), Hsinchu, Taiwan, 2014, pp. .
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HCI Aging modeling

e Device parameter degradation by HCI can be described by power-law:
AP = Byt™

where
P is the MOSFET parameter )Vt, gm, Idsat, etc,
tis the time,

Bo is the material depended parameter. See calculation in next page.

m is the power-law exponent for time-depended. m~0.5

30

- L
"  ed Ve 80V
§ o ®
=70V
8 ™ @
S
3 10 — '3 o
@ ° o O wvee
[ 4 i~
0 (0]

106 10 102 10° 100

Aging time (h)
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HCI Aging modeling

0.02 V=18V, V_=2.0V
ootgl| @ o8 ST

0.016
0.014
0.012

0.01

AV, V]

0.008
0.006
0.004

0.002

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Stress time [s]

Fig. 2.7 Hot carrier injection (HCI) is typically modeled with a power law time dependence. Here

the (measured and modeled) Vg shift of a 65 nm nMOS transistor, stressed with Vgs = 1.5V and
Vps = 2.0V, is depicted (Maricau et al. 2008)

After: Analog Circuits and Signal Processing

Eitan N. Shauly ~ Mar 25 page 114
Technical data contained herein are proprietary information of TOWER SEMICONDUCTOR LTD / Eitan Shauly which shall be treated confidentially, and shallnot be furished to third parties or
made public without prior writen permission by TOWER SEMICONDUCTOR LD / Eitan Shaly:

TOW=R

114

27



CMOS Reliability
Integration and
Engineering (Part-1)

HE for Floating Gate NVM
Programming

Dr. Eitan Shauly,

Tower Semiconductor
(Tel) 972-4-6506570, eitansh@Towersemi.com

Eftan N. Shauly  Mar 25 page 118
ical data contained herein are proprietary inforr n of TOWER SEMICONDUCTOR LTD / Eitan Shauly which shall be treated confidentially, and st ot be furnished to third parties or
mac ﬂ P ublic: t ut prior written permissior DYTUWER SEM\CONDUCTUR LTD / Eitan Shauly.

Floating gate devices - Principles
(1) FG is fully ISOLATED.

(2) The FG acts as a “potential well”: we need to "FORCE" charge
to be stored, and we need to FORCE charge to get out.

(3) Programmed="0" and Erased = "1".

— Charge in  Control

Gate
Control Floatlng Gate Floating
Gate Gate
G
c
s
®e ‘o
T CFS
N+ | N+ N+| N+
(a) Conventional MOS (b) Floating-Gate MOS
Eitan N. Shauly ~ Mar '25 page
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EPROM - UV Erasable Programmable ROM

(1) ONO (Oxide-Nitride-Oxide) is using for floating dielectric, for
better charge storage

/ POLY 2 WORD/SELECT

POLY 1 FLOATING
/ GATE

EPROM MEMORY CELL

25 page 120
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Channel Hot Electron: programming

Field — kinetic energy — overcome the barrier Hot holes

Hot electrons

Hole substrate current

Pinch-off — high electric fields near drain — hot carrier injection through SiO,
Note: < 1% of the electrons will reach the floating gate — power-inefficient
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EPROM (and Flash) characteristic theory

In equilibrium: the sum of charges = 0.

After program, Vt is shifted

Erased State
(Logic "17)

Programmed State
{Logic "0")

Qr
Viee = Vyo ——=E
TCG TO CG

Vtcg= Vt of control Gate

Vto depend on: Gate oxide (tunner
oxide), substrate doping,

Qf=Charge in floating gate
Cg=Capacitance between FG and CG

Drain Current

v v r -Qp SelectGate
TO Sense TO C_G Voltage
Threshold
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