

<u>Topics</u>

- 1. Introduction BEOL reliability concerns
- 2. Electromigration definition
- 3. Mass motion and flux modeling, Black equation
- 4. Blech length,
- 5. Void formation,
- 6. Stress effects
- 7. EM testing and qualification
- 8. Grain Size dependency, Alloys,
- 9. Barrier metals and other process related performances improvement
- 10. EM LT as function of Width and length
- 11. AC vs DC, Irms, Ipeak
- 12. EM scaling limitations

Eitan N	. Shauly	May/25	page 3	2		
Technical	data contained	d herein are proprietary	information of	TOWER SEMICONDUCTOR LTD	/ Eitan Shauly which shall be treated confidentially	, and shall not be furnished to third parties or
made put	lic without prio	r written permission by	TOWER SEMI	ICONDUCTOR LTD / Eitan Shauly.		

BEOL Reliability Concerns J. McPherson (TI), RTAB-TRC Austin, Tx 10.28.02 Bumping/Bonding Plastic-Die Interactions Cu Capping Laver Integrity Mechanical Adhesion Strength Modulus, CTE, **Crack Propagation** Cut Barrier Integrity Corrosion Cu ĒΜ Thermal Resistance Moisture Absorption +CnD - Н,О STV BEOL Impact on FEOL Electrical Resistivity Na+ Ř K+ Li+ Ultra Low-k Pre-metal dielectric Mobile-Ions Leakage, Vbd, TDDB page 4 mation of TOWER SEMICONDUCTOR LTD / Eitan Shauly which shall be treated cor FR SEMICONDUCTOR LTD / Eitan Shauly. Eitan N. Shauly May'25 <u>Tomer</u>

Crystal .	Structures and	<u>d Diffusion Mechanisms</u>
Amorphous		No crystal lattice or grain boundaries
Polycrystalline		Grain boundaries dominate
Near-bamboo		Featuring both crystal lattice and grain boundaries
Bamboo		Crystall lattice dominates
Monocrystalline		Crystall lattice and lattice defects define characteristics
Eitan N. Shauly May'25 Technical data contained herein are propriet made public without prior written permission	2030 10 any reformance of TOVER REMCONDUCTOR LTD / Elian Shauly which shall by TOWER SEMICONDUCTOR LTD / Elian Shauly.	be treated confidentially, and shall not be lumished to third parties or

EM flux and modeling • To have any void growth, there MUST be vacancy flux divergence, which is related to the ion flux divergence. This is dictated by the continuity equation: $dC_V/dt = -\nabla \cdot F_V + (C_V - C_V^0)/\tau$ • Cv is vacancy concentration, Fv is vacancy flux, Cvo is thermal equilibrium vacancy concentration τ average lifetime of vacancy Under steady-state conditions, $dC_V/dt = 0$ So: $-\nabla \cdot F_V = (C_V - C_V^0)/\tau$ Page 24 mation of TOWER SEMICONDUCTOR LTD / Eitan Shauly which shall be trea Eitan N. Shauly ntially, and shall not be furnished to third parties or TOMER

EM flux and modeling – the effect of stress

- The reason we are talking on stress is: Stress build up, due to mass transport, is the reason that EM stop (or might not start at all under specific conditions),
- Mass goes to the cathode, so the cathode end is more compressively stressed. We have stress gradient:

$$F_m = ND_0 * \frac{1}{kT} [(Z^*q\varepsilon) - \Omega(d\sigma_n/dx)]$$

- Ω is the atomic volume,
- σ_{n} is the stress normal to the grain boundary
- dX is the length of the wire (distance between anode to cathode)
 Note that also the diffusion coefficient is depend on stress: high stress
 reduce diffusivity.
- Example: oxide above the conductor, will induced stress into the conductor, and might improve the EM performances,

Eitan N, Shauly May 202 minimula data control data mate prophetery information of TOVER SEMICONDUCTOR LTD / Eitan Shauly which shall be treated confidentially, and shall not be lumished to third partir made public without pror writen permission by TOWER SEMICONDUCTOR LTD / Eitan Shauly.

Fast Diffusion Path for	r EM (Cu	<u>u BEOL)</u>								
Diffusion path	$E_{\rm A}~({\rm eV})$	Cap-layer								
Bulk Cu	2.2	void boundary								
Dislocations	1.2 - 1.5	(There)								
Grain Boundaries	0.88-0.95									
Surface	0.8 - 0.9									
Lowest activation energy at SiC/C	u interface	interface								
 Low activation energy for grain boundaries When the grain boundaries are parallel to the electron wind 										
Elimination is at all for possible path's.										
Bulk Cu – by Cu plating process	Void fo points	ormation and growth mainly at where flux divergences occur								
Dislocations – Cu plating and Cu	anneal									
Grain boundary – by controlling c	of the grain'	s size and orientation								
Surface – by better cap-liner adh	sion									
Etan N. Shauly May25 page 51 Technical data contained herein are proprietary information of TOWER SEMICONDUCTOR LTD / Etan Shauly which shall made public without prior written permission by TOWER SEMICONDUCTOR LTD / Etan Shauly.	be treated confidentially, and shall not be fu	unitabled to third parties or								

EM	L>400um, Wmin with single via; L>400um, W~3um, row of vias. (2L/2W/15~20S for each stress condition) Monitor the metal line resistance under current. Stress the line a					
EM Success	Monitor the metal line resistance under current. Stress the line a					
Success	different temperatures and current densities					
Criteria	Success Criteria LT>100,000hrs at J _{DC} , 100~110degC, CumF=100~1000ppm					
Typical Model	$TTF_{oper} = MTTF_{stress} {\left({{I_{stress}}} \right)^n}\exp \! \left[{\frac{{E_a}}{{K_B}}\!\left({\frac{1}{{T_{stress}}} - \frac{1}{{T_{oper}}}} \right)} + {N_{stdev}}\sigma \right]$					

Joule Heating considerations

- Under EM conditions, an initial (excessive) current density causes void growth and cross-sectional degradation, which increases the local current density.
- At the same time, the (increasing) current density causes a temperature rise due to (local) Joule heating. The increased heat also accelerates diffusion and thus further increases the void growth.
- JEDEC (JESD61) recommend to test under *isothermal conditions*: *maintain* the temperature of the test line, by varying (reduce) the stress current based on the Joule heating induced to the line.
- Done by a test algorithm which use a feedback control loop to adjust the stress current. TCR (Temp coefficient of Resistance) is needed.
- Another way: estimate the "real" temperature (higher than Tstress) and use it.

Eitan N. Technical made publ	I. Shauly Ma data contained here blic without prior writt	ay'25 in are proprietary en permission by	page 100 information of TOWER SE TOWER SEMICONDUCTO	MICONDUCTOR LTD / Eitan Sha R LTD / Eitan Shauly.	auly which shall be treated confider	ntially, and shall not be furnish	ed to third parties or	TOMER

Joule Heating – Resistance correction

· The resistance and the Power in test temperature (WITHOUT EM degradation) can be corrected as next:

$$R_{i}(T_{test}) = R(T_{ref}) \left[1 + TCR(T_{ref}) * (T_{test} - T_{ref}) \right]$$
$$P(T_{test}) = I_{i}^{2}(T_{test}) \cdot R_{i}(T_{test})$$

• Two steps:

Eitan N. Shauly May'25

(1) Current ramp at a set rate: the electrical resistance is measured at each current step, and the differential thermal resistance and effective temperature are estimated from knowledge of the forced power and the TCR.

(2) Stress time: the isothermal test algorithm attributes all change in resistance of the structure to thermal effects. The differential thermal resistance is relied on to predict the target stress current

tomer

Electromigration Testing

- Test methodology
 - Accelerate EM by increasing the temperature and the current density
 - Fit TTF measurements (ussualy failures are defined as a certain increase of resistance (typically 10%) to lognormal distribution
 - Extract t50 or any other TTF value
 - Extrapolate to operating conditions by using Black's formula for MTF (use AF)
- Acceleration factor
 - n and Ea vary with structure, metallization, and microstructure → determined experimentally.
 - This can be done with a minimum of 4 separate groups of parts using 3 different values of current density and 2 temperatures

Eitan N. Shauly May/25 page 109 Technical data contained herein are properlary informational TWIER SEMICONDUCTOR LTD / Eitan Shauly which shall be treated confidentially, and shall not be furnished to timade pdd/e whichoprovintem permissionsly TOVER'S EMICONDUCTOR LTD / Eitan Shauly.

• Max currents needed for IC		Table 1.1 Technology parameters based on the ITRS [ITR14]; maximum currents and current densities for copper at 105 $^{\circ}\mathrm{C}$							
reduce with scaling,		Year	2016	2018	2020	2022	2024	2026	2028
~	→ →	Gate length (nm)	15.34	12.78	10.65	8.87	7.39	6.16	5.13
• But width and thickness		On-chip clock frequency (GHz)	6.19	6.69	7.24	7.83	8.47	9.16	9.91
reduction reduce the wire		DC equivalent maximum	29.09	23.19	16.52	12.40	9.99	7.89	5.91
cross-section,		current (µA, four gates) ^a							
		Metal 1 properties (Interco	nnect)	22.5	17.0	142	11.0		
• so increase the current		Width—half-pitch (nm)	28.3	22.5	17.9	14.2	11.3	8.9	7.1
donsition and minimize the		Height (nm) ^a	56.7	45.0	35.7	2.1	2.1	19.6	15.6
operations window		Cross-sectional area (nm ²) ^a	1607.2	1012.5	637.8	421.9	265.8	175.4	110.5
1		DC equivalent current densities (MA/cm ²)							
		Maximum tolerable current density (w/o EM degradation) ^b	3.0	1.8	1.1	0.7	0.4	0.3	0.2
		Maximum current density (beyond solutions are unknown) ^b	15.4	9.3	5.6	3.4	2.1	1.2	0.7
		Required current density for driving four inverter gates	1.81	2.29	2.59	2.94	3.76	4.50	5.35
				EM t	o be expe	cted	Solut	ions unk	nown
		Values from ITRS [ITR14] °Calculated values, based on given width W, aspect ratio A/R , and current density J, calculated as follows: layer thickness $T = A/R \times W$, cross-sectional area $A = W \times T$, and current $I = J \times A$ °Values taken from Fig. INTC9 of ITRS [ITR14]							
Eitan N. Shauly May25 page 142 Technical data contained herein are proprietary information of TOWER SEMICOND made public without prior written permission by TOWER SEMICONDUCTOR LTD /	UCTOR LT Eitan Shaul	D / Eitan Shauly which shall be treated confider y.	ntially, and shall n	ot be furnished to	third parties or	(

